Open statistical ensemble

Open statistical ensemble

Open statistical ensemble (OSE) corresponds to a physical system, which exchanges energy with the environment, being with it in thermal equilibrium, exchanges particles with the environment for a given chemical potential and correctly takes into account the surface terms.

The expression for the partition function of the ensemble is similar to the partition function of the grand canonical ensemble (GCE), with the replacement of the Boltzmann factor in terms of the series on the correlation functions of special form.

The coefficient of surface tension, included in the partition function corresponds to the interface of fluid and hard solid, due to the strict respect of probability and potential limitations.

Unlike the GCE, for OSE average number of particles in a given volume is strictly coincides with the volume term. Also in contrast to the GCE, the correlation functions of the OSE strictly satisfy the requirement of translational invariance.

The expression for the general term of the distribution has the form

 p^v_m = \frac{z^m}{m! \Upsilon_v} \sum_{t=0}^\infty \frac{z^t}{t!} \int \left [ \prod_{i = 1}^m \prod_{j = m+1}^{m+t}\psi^v_i\chi^v_j \right ] {\mathcal B}^{(m,t)}_{1...m+t} d\boldsymbol{r}_1...d\boldsymbol{r}_{m+t},

where  p^v_m is the probability to find  ~m particles in volume  ~v ,  ~m \geq 1 ,  ~z is activity,  ~\Upsilon_v - OSE partition function.  ~\psi^v_i and  ~\chi^v_j = 1 - \psi^v_j - characteristic functions, equal to unity inside and outside the system, respectively, and  ~{\mathcal B}^{(m,t)}_{1...m+t} - partial localization factors, generalize the notions of the Boltzmann and Ursell factors and contain them as extreme cases.

The first term of the series corresponds to the distribution of the GCE with the accuracy up to normalizing factors - partition functions.

Summing the series we obtain the expression

 p^v_m = \frac{1}{m! \Upsilon_v} \int \left [ \prod_{i = 1}^m \psi^v_i \right ] \varrho^{(m)}_{G,1...m}(\chi^v) d\boldsymbol{r}_1...d\boldsymbol{r}_m,

where  ~\varrho^{(m)}_{G,1...m} - correlation function, depending on  ~z ,  ~\chi^v and expressed through a series of  ~{\mathcal B}^{(m,t)}_{1...m+t} . The last expression is equivalent to the GCE distribution with the replacement

 \varrho^{(m)}_{G,1...m} \approx z^m \exp(-\beta U^{m}_{1...m})

and corresponding renormalization, where  ~U^{m}_{1...m} -  ~m -particle interaction potential,  ~1/\beta = k_B T ,  ~k_B - Boltzmann constant,  ~T - temperature. This expression shows that the GCE is a low-density approximation of the OSE.

For the partition function of the OSE, we have the expression

\Upsilon_v = \exp { \sum_{t=1}^\infty \frac{z^t}{t!} \int \left [1 - \prod_{i = 1}^{t} \chi^v_i \right ] {\mathcal U}^{(t)}_{1...t} d\boldsymbol{r}_1...d\boldsymbol{r}_t  },

unlike the partition function of GCE

 \Xi_v =  \exp {  \sum_{t=1}^\infty \frac{z^t}{t!} \int \left [ \prod_{i = 1}^{t} \psi^v_i \right ]  {\mathcal U}^{(t)}_{1...t} d\boldsymbol{r}_1...d\boldsymbol{r}_t  },

where  ~{\mathcal U}^{(t)}_{1...t} - Ursell factors. Collapsed series of activities for  ~\Upsilon_v  we obtain the alternative representation

 ~\Upsilon_v = \exp{\beta [ vP(z,T)  + a\sigma (z,T) ]},

where  ~P(z,T) is the pressure,  ~\sigma (z,T) - coefficient of surface tension on the interface of the fluid and hard solid,  ~a - the surface bounding the system.

It should be stressed that an open system does not singled out, and the surface tension is created due to the fluctuation component of the partition function.

The last expression is exactly consistent with the probability of the formation of the hole volume  ~v in the fluid

 ~p^v_0 = \exp-{\beta [ vP(z,T)  + a\sigma (z,T) ]},

is determined from thermodynamic considerations

  ~p^v_0 \propto \exp{( -\beta R_{min})},

where   ~R_{min} - minimum work of formation of such fluctuations.

Some properties of the OSE

  • Scale invariance. In contrast to grand canonical ensemble, an open statistical ensemble satisfies the scale invariance requirement: general term of the included subsystem distribution corresponds to that of the original system.
  • Application to small systems. This distribution may be applied to however small volumes including those less than a molecule size. In this case it degenerates into a Bernoulli distribution with   ~p=\varrho v .
  • Separation of fluctuations. When volume is much greater than the size of the molecule squared deviation of the number of particles is divided into bulk and surface terms.


  • Zaskulnikov V. M., Open statistical ensemble and surface phenomena: arXiv:0911.3106
  • Zaskulnikov V. M., Open statistical ensemble: new properties (scale invariance, application to small systems, meaning of surface particles, etc.): arXiv:1004.0896v1

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Microcanonical ensemble — Statistical mechanics Thermodynamics · …   Wikipedia

  • Partition function (statistical mechanics) — For other uses, see Partition function (disambiguation). Partition function describe the statistical properties of a system in thermodynamic equilibrium. It is a function of temperature and other parameters, such as the volume enclosing a gas.… …   Wikipedia

  • Tournois majeurs professionnels de tennis de l'ere pre-open — Tournois majeurs professionnels de tennis de l ère pré open Sommaire 1 Les grands tournois professionnels avant 1968 1.1 Exemples de divergences entre les sources 1.2 Grand Chelem professionnel 1.3 …   Wikipédia en Français

  • Tournois majeurs professionnels de tennis de l'ère pré-open — Sommaire 1 Les grands tournois professionnels avant 1968 1.1 Exemples de divergences entre les sources 1.2 Grand Chelem professionnel 1.3 Wembley Pro …   Wikipédia en Français

  • Открытый статистический ансамбль —     Статистическая физика …   Википедия

  • Статистический ансамбль — Статистическим ансамблем физической системы называется набор всевозможных состояний данной системы, отвечающих определённым критериям. Примерами статистического ансамбля являются: микроканонический ансамбль, описывающий состояния системы с… …   Википедия

  • Масштабная инвариантность — или скейлинг  свойство уравнений физики, сохранять свой вид при изменении всех расстояний и промежутков времени в одинаковое число раз, то есть Причём здесь подразумевается лишь изменение единиц измерения, само пространство время остаётся… …   Википедия

  • Maxwell–Boltzmann statistics — Statistical mechanics Thermodynamics · …   Wikipedia

  • Entropy — This article is about entropy in thermodynamics. For entropy in information theory, see Entropy (information theory). For a comparison of entropy in information theory with entropy in thermodynamics, see Entropy in thermodynamics and information… …   Wikipedia

  • Density matrix — Mixed state redirects here. For the psychiatric condition, see Mixed state (psychiatry). In quantum mechanics, a density matrix is a self adjoint (or Hermitian) positive semidefinite matrix (possibly infinite dimensional) of trace one, that… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”