Sackur–Tetrode equation

Sackur–Tetrode equation

The Sackur–Tetrode equation is an expression for the entropy of a monatomicclassical ideal gas which uses quantum considerations to arriveat an exact formula. Classical thermodynamics can only give the entropy of a classical ideal gas to within a constant.

The Sackur–Tetrode equation is named for Hugo Martin Tetrode (1895–1931) and Otto Sackur (1880–1914), who developed it independently as a solution of Boltzmann's gas statistics and entropy equations, at about the same time in 1912.

The Sackur–Tetrode equation is written:

:S = k N lnleft [ left(frac VN ight) left(frac UN ight)^{frac 32} ight] +{frac 32}kNleft( {frac 53}+ lnfrac{4pi m}{3h^2} ight)

where "V" is the volume of the gas, "N" is the number of particles in the gas, "U" is the internal energy of the gas, "k" is Boltzmann's constant, "m" is the mass of a gas particle, "h" is Planck's constant and ln() is the natural logarithm. See Gibbs paradox for a derivation of the Sackur–Tetrode equation. See also the ideal gas article for the constraints placed upon the entropy of an ideal gas by thermodynamics alone.

The Sackur–Tetrode equation can also be conveniently expressed in terms of the
thermal wavelength Lambda . Using the classical ideal gas relationship "U" = (3/2)"NkT" for a monatomic gas gives

:frac{S}{kN} = lnleft [frac{V}{NLambda^3} ight] +frac{5}{2}

Note that the assumption was made that the gas is in the classical regime, and is described by Maxwell–Boltzmann statistics (with "correct counting"). From the definition of the thermal wavelength, this means the Sackur–Tetrode equation is only valid for

:frac{V}{NLambda^3}gg 1.

and in fact, the entropy predicted by the Sackur–Tetrode equation approaches negative infinity as the temperature approaches zero.

The Sackur–Tetrode constant

The Sackur–Tetrode constant, written S_0/R, is equal to "S/kN" evaluated at a temperature of "T" = 1 kelvin, at standard atmospheric pressure (101.325 kPa), for a particle of mass equal to one atomic mass unit ("m" = 1.6605388628x10−27 kg), which yields the dimensionless quantity:

:S_0/R = -1.1648678pm 0.0000044,

(Note: sometimes a pressure of 100 kPa is used, which yields a value of −1.15169321.)


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Équation de Sackur-Tetrode — L équation de Sackur Tetrode donne l entropie exacte d un gaz parfait monoatomique, non dégénéré, non relativiste : S= S(U,V,N). Soit Λ la longueur d onde thermique de de Broglie : , et Λ3 = V0 le volume correspondant, alors dès 1912,… …   Wikipédia en Français

  • Equation d'etat des gaz parfaits — Gaz parfait Le gaz parfait est un modèle thermodynamique décrivant le comportement de tous les gaz réels à basse pression. Ce modèle a été développé au XIXe siècle en constatant que tous les gaz tendent vers ce même comportement à pression… …   Wikipédia en Français

  • Équation d'état des gaz parfaits — Gaz parfait Le gaz parfait est un modèle thermodynamique décrivant le comportement de tous les gaz réels à basse pression. Ce modèle a été développé au XIXe siècle en constatant que tous les gaz tendent vers ce même comportement à pression… …   Wikipédia en Français

  • Équation des gaz parfaits — Gaz parfait Le gaz parfait est un modèle thermodynamique décrivant le comportement de tous les gaz réels à basse pression. Ce modèle a été développé au XIXe siècle en constatant que tous les gaz tendent vers ce même comportement à pression… …   Wikipédia en Français

  • Équation d’état des gaz parfaits — Gaz parfait Le gaz parfait est un modèle thermodynamique décrivant le comportement de tous les gaz réels à basse pression. Ce modèle a été développé au XIXe siècle en constatant que tous les gaz tendent vers ce même comportement à pression… …   Wikipédia en Français

  • Otto Sackur — (Breslau, September 28, 1880 Berlin, December 17, 1914) was a German physical chemist. He is known for the development of the Sackur Tetrode equation which he developed independently of Hugo Tetrode Sackur studied at the University of Breslau,… …   Wikipedia

  • Birch–Murnaghan equation of state — In continuum mechanics, an equation of state suitable for modeling solids is naturally rather different from the ideal gas law. A solid has a certain equilibrium volume V0, and the energy increases quadratically as volume is increased or… …   Wikipedia

  • Ideal gas — Thermodynamics …   Wikipedia

  • Entropy — This article is about entropy in thermodynamics. For entropy in information theory, see Entropy (information theory). For a comparison of entropy in information theory with entropy in thermodynamics, see Entropy in thermodynamics and information… …   Wikipedia

  • Gibbs paradox — In statistical mechanics, a semi classical derivation of the entropy that doesn t take into account the indistinguishability of particles, yields an expression for the entropy which is not extensive (is not proportional to the amount of substance …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”