CobraNet

CobraNet
CobraNet
CobraNet logo.svg
CobraNet logo
Manufacturer Info
Manufacturer Cirrus Logic
Development date 1996
Network Compatibility
Switchable Yes
Routable No
Ethernet data rates Fast Ethernet
Audio Specifications
Minimum latency 1 13 ms[1]
Maximum channels per link 64 (32+32)
Maximum sampling rate 96 kHz[1]
Maximum bit depth 24 bits

CobraNet is a combination of software, hardware and network protocols designed to deliver uncompressed, multi-channel, low-latency digital audio over a standard Ethernet network. Developed in the 1990s, CobraNet is widely regarded as the first commercially successful implementation of audio over Ethernet.[2][3]

CobraNet was designed for and is primarily used in large commercial audio installations such as convention centers, stadiums, airports, theme parks and concert halls. It is most useful in applications where a large number of audio channels must be transmitted over long distances or to multiple locations.

CobraNet is an attractive alternative to analog audio, which suffers from signal degradation over long cable runs due to electromagnetic interference, high-frequency attenuation, and voltage drop. Additionally, the use of digital multiplexing allows audio to be transmitted using much less cabling than analog audio.

Contents

History

CobraNet was developed in 1996 by Boulder, Colorado-based Peak Audio. Initial demonstrations were of a 10 Mbit/s point-to-point system with limited channel capacity. The first permanent installation of CobraNet in this early form was to provide background music throughout the Animal Kingdom theme park.[4] The first commercial use of CobraNet as an interoperable standard was during the half-time show at Super Bowl XXXI in 1997.[5]

CobraNet was first introduced as an interoperable standard in collaboration with manufacturer QSC Audio Products. QSC was the first to license the technology from Peak Audio and marketed it under the RAVE brand. At this point CobraNet had graduated to Fast Ethernet and used a patented collision avoidance technique[6] to carry up to 64 channels per Ethernet collision domain.

CobraNet was subsequently enhanced to support and eventually require a switched Ethernet network. An SNMP agent was added for remote control and monitoring. Support for higher sample rates, increased bit resolutions and lowered latency capabilities were later introduced in an incremental and backwards-compatible manner.

In May 2001, Cirrus Logic announced that it had acquired the assets of Peak Audio.[7] Leveraging Cirrus DSP technology, a low-cost SoC implementation of CobraNet was developed and marketed. CobraNet has been widely licensed by commercial audio equipment manufacturers and installed in thousands of facilities worldwide.

Advantages and disadvantages

Advantages

  • Cabling cost – using CobraNet and fast Ethernet, 64 channels of uncompressed digital audio are carried through a single, inexpensive Cat-5 cable. In the analog world, this would have required 64 separate analog audio cables, each of which cost the same or more than the Cat-5 cable. Using gigabit and/or fiber optic Ethernet variants, the cost of cabling per audio channel is further reduced compared to the fast Ethernet connections. Also, since CobraNet data can coexist with data traffic over existing Ethernet networks, a single network infrastructure can economically serve both audio distribution and other networking needs for a facility.[8][9]
  • Flexibility – a well-designed network provides enhanced flexibility for future changes to the system. For instance, audio routing can be changed on the fly with network commands, and do not require any rewiring.[10]
  • Reliability – use of Ethernet by CobraNet affords many High Availability features such as Spanning Tree Protocol, Link Aggregation and Network Management. For critical applications, CobraNet devices can be wired with a redundant link. In the case that one CobraNet device, cable, or Ethernet switch fails, the other takes over almost immediately.[11][12]
  • Audio quality – audio is transmitted in digital form, and therefore it enjoys the same benefits that any other digital medium does. These benefits include reduced susceptibility to electromagnetic interference, crosstalk, coloration and attenuation due to cable impedance.[13][14]

Disadvantages

  • Latency – delays over the CobraNet transmission medium itself are at least 1 13 milliseconds[note 1] per network traversal. For some applications, these delays can be unacceptable especially when combined with further delays resulting from propagation time, digital signal processing and the conversions between analog and digital.
  • Hardware cost – although significant money is usually saved in cabling, at least part of that money is spent on the required CobraNet devices which encode and decode the CobraNet signal.

Transmission

Simple block diagram of an audio system employing CobraNet technology. Red lines indicate analog audio signals, while green lines indicate standard Ethernet signals.

CobraNet is transmitted using standard Ethernet packets. Instead of using TCP/IP packets, CobraNet transfers data using data link layer packets, which travel quickly through hubs, bridges and switches, and are not as susceptible to the latency and QoS problems commonly found in streaming protocols using a higher transport layer. However, since CobraNet does not use an IP protocol, its packets cannot travel through routers, and therefore it is limited to use on a LAN; CobraNet cannot be used over the Internet. The network over which CobraNet is transmitted must be able to operate at a minimum of 100 Mbit/s (also known as Fast Ethernet). All CobraNet packets are identified with a unique Ethernet protocol identifier (0x8819) assigned to Cirrus Logic.[10]

While CobraNet has been shown to function properly over wireless networks under ideal conditions,[citation needed] bandwidth and reliability issues associated with typical 802.11 wireless networks tend to cause frequent dropouts and fatal errors.[15] However, wireless communication of CobraNet data can be reliably accomplished using lasers.[16]

Channels and bundles

CobraNet data is organized into channels and bundles. A typical CobraNet signal can contain up to 4 bundles of audio travelling in each direction, for a total of 8 bundles per device. Each bundle houses up to 8 channels of 48 kHz, 20-bit audio, for a total capacity of 64 channels. CobraNet is somewhat scalable, in that channel capacity increases when 16-bit audio is used, and channel capacity decreases when 24-bit audio is used. The number of channels allowed per bundle is limited by the 1,500-byte Ethernet MTU.[10]

There are three types of bundles: multicast, unicast, and private:[10]

  • Multicast bundles are "broadcast" from one CobraNet device to all other CobraNet devices in the network using Ethernet multicast addressing. Each CobraNet device individually determines if it will use the bundle or discard it. Therefore, multicast bundles are more bandwidth-intensive than other bundle types. Bundle numbers 1–255 are reserved for multicast bundles.
  • Unicast bundles are sent from one CobraNet device to any other device or devices configured to receive the bundle number. Unicast bundles are much more efficient because they attempt to travel only to devices which actually want to receive them. Despite their name, unicast bundles may still be sent to multiple devices, either by transmitting multiple copies of the audio data or using multicast addressing. Bundle numbers 256–65279 are reserved for unicast bundles.
  • Private bundles may be sent with unicast or multicast addressing. Bundle numbers 65280–65535 are reserved for private bundles. Private bundle numbers are associated with the MAC address of the device that transmits them. To receive a private bundle, both the bundle number and the MAC address of the transmitter must be specified. Because private bundles are associated with the transmitters there is no limit on the number private bundles.

As long as multicast bundles are used sparingly, it is virtually impossible to exceed the bandwidth of a 100 Mbit network with CobraNet data. However, there are limitations to the maximum number of bundles that can be sent on a network, since the conductor must include data in its beat packets for every bundle on the network, and the beat packet is limited to 1,500 bytes. If each device is transmitting one bundle, there may be up to 184 transmitters active simultaneously (for a total of 184 bundles). If each device is transmitting four bundles, then only 105 transmitters can be active, although they would be producing a total of 421 active bundles. The use of private bundles does not require any additional data in the beat packet, so these network limitations can be sidestepped by using private bundles.[17]

Synchronization

The CobraNet network is synchronized to a single CobraNet device known as the conductor. A conductor priority can be configured to influence selection of the conductor. Among devices with the same conductor priority, the first to establish itself on the network becomes is elected conductor. All other devices are known as performers. In the event that the conductor fails, another CobraNet device will be chosen to become the conductor within milliseconds. CobraNet cannot function without a conductor.[18]

Packets

Four main types of packet are used in the transmission and synchronization of CobraNet:[10]

  • Beat packets – the conductor outputs a beat packet to all other CobraNet devices on the network, at a rate of 750 packets per second. All other CobraNet devices on the network synchronize their audio clock and their data transmissions to the beat packet. The beat packet contains network operating parameters, clock data and transmission permissions for multicast and unicast bundles.
  • Audio packets – also known as "Isochronous Data Packets", these packets are sent out by all CobraNet devices after they receive a beat packet. At standard latency settings, one audio packet is sent for each beat packet received, and each audio packet transmits 64 samples of audio data per channel. However, at lower latency settings, audio packets may be sent twice or four times for each beat packet received. Bundles do not share packets; separate packets are sent in sequence for each bundle transmitted from the same device.
  • Reservation packets – these packets are transmitted as needed or typically once per second at minimum. Their function is to control bandwidth allocation, initiate connections between CobraNet devices, and monitor the status of CobraNet devices.
  • Serial bridge packets – asynchronous serial data may be sent between CobraNet devices on the same network. Many standard asynchronous serial formats are supported, including RS-232, RS-422, RS-485 and MIDI.

Latency

The buffering of audio data into Ethernet packets typically incurs a delay of 256 samples (or 5 13 milliseconds). Additional delays are introduced through A-D and D-A conversion (typically 10–50 samples). Latency can be reduced by sending smaller packets more often. In most cases, the programmer can choose the desired CobraNet latency for a particular CobraNet device (5 13, 2 23, or 1 13 milliseconds).[10] However, reducing audio latency has consequences:

  • Reducing latency requires more processing power.
  • Reducing latency places additional demands on network performance, and may not be possible in some network configurations if the forwarding delay is too great.
  • Since reducing latency means sending smaller packets more often, more high resolution (i.e. 96 kHz, 24-bit) audio channels can be sent per bundle without exceeding the 1,500-byte payload limit for Ethernet packets. See the table below for bundle capacity limits:[10]
Latency Channels per bundle
16 bit, 48 kHz 20 bit, 48 kHz 24 bit, 48 kHz 16 bit, 96 kHz 20 bit, 96 kHz 24 bit, 96 kHz
5 13 ms 8 8 7 5 4 3
2 23 ms 8 8 8 8 8 7
1 13 ms 8 8 8 8 8 8

It may seem from the table above that more information can be sent at a lower latency. However, that is not the case. More channels can be sent per bundle, but fewer bundles can be processed simultaneously by one device. So, while eight 24-bit, 96 kHz channels can be sent in one bundle at 1 13 ms latency, due to processing constraints, the CobraNet device may only be able to send and receive one bundle instead of the usual four. The bundle capacity of CobraNet devices are unique to the particular device, and are not always the same. However, below is a table illustrating the bundle capacity for a Biamp AudiaFLEX-CM DSP device. The Rx and Tx columns indicate the absolute maximum number of channels that can be received or transmitted. The Rx/Tx column represents the maximum number of channels that can be received and transmitted simultaneously.[19]

Channels per bundle 5 13 ms latency 2 23 ms latency 1 13 ms latency
Rx Tx Rx/Tx Rx Tx Rx/Tx Rx Tx Rx/Tx
8 32 32 32/32 32 32 32/32 32 32 16/16
7 32 32 32/32 32 32 29/29 28 32 14/15
6 32 32 32/32 32 32 29/29 24 32 12/13
5 32 32 32/32 32 32 25/27 21 32 12/13
4 32 32 32/32 32 32 24/24 20 28 12/12
3 32 32 32/32 32 32 20/21 15 24 9/11
2 32 32 28/29 27 32 16/16 12 18 6/7
1 16 16 16/16 16 16 9/10 7 10 4/4

Hardware and software

CobraNet network cards

CobraNet network cards come in several varieties, some of which can support more channels than others. Additionally, CobraNet network cards have two Ethernet ports labelled "primary" and "secondary". Only the primary Ethernet port needs to be connected, but if both ports are connected they become a redundant failsafe. That is, if the primary port loses communication, the secondary port immediately takes over with no packet loss. Careful network design and topology which takes advantage of this feature can provide extremely high reliability in critical applications.[11][12]

The typical CobraNet network cards provided by Cirrus Logic are the CM-1 and the CM-2:[20]

  • CM-1 – the standard CobraNet card, provides 32x32 simultaneous I/O channels.
  • CM-2 – compact, low-power, lower cost design provides 8 or 16 simultaneous I/O channels.

Both cards are designed to be added to audio products by the manufacturer.

Software

Cirrus Logic provides a software application known as CobraCAD, which assists in the design of the network on which the CobraNet system will run. It helps to identify if there are too many routers between two CobraNet devices, if a certain latency is possible given the network configuration, and other tasks. However, Cirrus Logic does not provide software to manipulate their hardware. In fact, in the simplest of cases, no software is required by the end user. For instance, a simple breakout box which converts a CobraNet signal to eight analog audio signals would require little or no configuration by the end user (apart from possibly selecting the bundle number).[21] If configuration is required (for example, in a DSP box with integrated CobraNet I/O), then the manufacturer of the device typically supplies proprietary software for that purpose.

Licensed manufacturers

Manufacturers who wish to integrate CobraNet connectivity into their devices must license the technology from Cirrus Logic. Many audio equipment manufacturers have included CobraNet in their products. Below is a partial list of notable examples, sorted by device type:[22]

DSP

One of the most popular and useful devices that integrates CobraNet is the audio DSP. These devices typically receive audio from CobraNet (and often from other digital or analog sources simultaneously), process the audio using digital filters and effects (for example, volume control, EQ, compression, delay, crossovers, etc.) and then output the audio via CobraNet (or other digital or analog outputs). Some DSPs even have an integral telephone hybrid, and can incorporate CobraNet and other sources into a teleconferencing application.[23]

Amplifiers

Amplifiers with integrated CobraNet help keep the signal chain digital for a longer span. Amplifiers with CobraNet inputs often also have limited DSP and monitoring capabilities built-in.

Loudspeakers

Loudspeakers with integrated CobraNet help keep the signal chain digital for an even longer span. In a typical unpowered speaker application, the amplifier would be housed far away from the speaker, and a long speaker cable (analog) would be run between the speaker and the amplifier. The speaker cable would be subject to interference and signal loss from electrical resistance. However, a powered speaker, powered by an electrical cable and fitted with integrated CobraNet inputs, eliminates the speaker cable and replaces it with a network cable.[13][14] Since a speaker will only use one audio channel out of the bundle, many speakers with CobraNet will also have a number of analog outputs for the rest of the channels in the bundle, which is useful in speaker cluster applications.

Mixing consoles

Many digital mixing consoles are available with optional CobraNet interfaces for increased channel capacity and reduced cabling.

See also

Notes

  1. ^ CobraNet supports three latency modes: 1 13, 2 23 and 5 13 ms. See #Latency for details.

References

  1. ^ a b "Best Practices in Network Audio". Audio Engineering Society. 2009. http://www.aes.org/technical/documents/AESTD1003V1.pdf. Retrieved 2010-05-05. 
  2. ^ Karagosian, Michael (2004), Following the Digital Audio Chain, http://mkpe.com/publications/theme_parks_&_systems/digitalaudiochain.php, retrieved 2007-03-19 
  3. ^ The back of the net, ProAudio-Central, 2 August 2010, http://www.proaudio-central.com/Publications/Pro-Audio-Asia/Technology/856-/The-back-of-the-net, retrieved 2010-08-17 
  4. ^ Karagosian, Michael (2006), How Theme Parks Work (Part 3:Networks), http://www.mkpe.com/theme_parks/networks.php, retrieved 2007-03-19 
  5. ^ Audio Networking (2009), AARC-NET, Audio Networking Made Simple, http://www.arrakis-systems.com/aarcnet.html, retrieved 2009-10-31 
  6. ^ US patent 5761430, "Media access control for isochronous data packets in carrier sensing multiple access systems" 
  7. ^ Doering, Christian (2001), Fiber in the Whole (House): Cirrus Logic Buys Peak Audio, http://www1.prosoundweb.com/industrybiz/biz_news/5_01_biz_news/cirrus.shtml, retrieved 2009-11-30 
  8. ^ Cirrus Logic, Ethernet Overview, http://www.cobranet.info/support/design/ethernet_overview, retrieved 2009-12-01 
  9. ^ Cirrus Logic, CobraNet FAQ, Question 12, http://www.cobranet.info/support/faq#Q12, retrieved 2009-12-01 
  10. ^ a b c d e f g Cirrus Logic, Inc. (2–2006) (PDF). CobraNet Programmer's Reference. 2.5. pp. 7–27. http://www.cirrus.com/en/pubs/manual/CobraNet_Programmer_Manual_PM25.pdf. Retrieved 2009-11-30. 
  11. ^ a b Yamaha System Solutions (2006) (PDF). An introduction to networked audio. p. 7. http://www.yamahaproaudio.com/downloads/documents/data/white_papers/networkedaudio_introduction_en.pdf. Retrieved 2009-12-01. 
  12. ^ a b Yamaha System Solutions (2006) (PDF). Networked audio system design with CobraNet. p. 4. http://www.cobranet.info/sites/default/files/YamahaWP_-_Networked_audio_system_design_with_CobraNet_012607.pdf. Retrieved 2009-12-01. 
  13. ^ a b Gross, Kevin. Digital Audio Distribution Systems. http://www.cobranet.info/support/design/digital_audio_distrib. Retrieved 2009-12-01. 
  14. ^ a b Renkus Heinz, Inc. (PDF). p. 4. http://www.renkus-heinz.com/pdf_ads/CobraNetWeb.pdf. Retrieved 2009-12-01. 
  15. ^ Cirrus Logic, CobraNet FAQ, Question 13, http://www.cobranet.info/support/faq#Q13, retrieved 2009-11-30 
  16. ^ "Whirlwind E-Beam Laser". http://whirlwindusa.com/catalog/digital-audio-networking/e-beam-laser/ebeam. Retrieved 2010-09-18. 
  17. ^ Cirrus Logic, CobraNet FAQ, Question 28, http://www.cobranet.info/support/faq#Q28, retrieved 2009-11-30 
  18. ^ Cirrus Logic, CobraNet FAQ, Question 24, http://www.cobranet.info/support/faq#Q24, retrieved 2009-11-30 
  19. ^ Biamp Systems (2007-02-14) (PDF). Audia Operation Manual. p. 128. http://www.biamp.com/audiaflex.php?act=log&dlid=18&type=prod&tid=3. Retrieved 2009-11-30. 
  20. ^ Cirrus Logic, CobraNet Networked Digital Audio, http://www.cirrus.com/en/products/pro/techs/T9.html, retrieved 2007-03-19 
  21. ^ Whirlwind (PDF). CI8M user manual. p. 1. http://whirlwindusa.com/media/uploads/ci8mmanual.pdf. Retrieved 2010-09-18. 
  22. ^ Cirrus Logic, CobraNet Community, http://www.cobranet.info/community/manufacturer, retrieved 2009-11-30 
  23. ^ Biamp Systems (PDF). AudiaFLEX Digital Audio Platform. http://biamp.com/download_redirect.php?dlid=5&type=prod&tid=4. Retrieved 2009-12-01. 
  24. ^ Stewart Audio Announces The New CVA100-2 CobraNet Enabled Amplifier, 2011-05-23, http://www.prosoundweb.com/article/stewart_audio_announces_the_new_cva100_2_cobranet_enabled_amplifier/, retrieved 2011-07-06 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Cobranet — is a combination of software, hardware and network protocols designed to deliver uncompressed, multi channel, low latency digital audio over a standard Ethernet network. Developed in the 1990s, CobraNet is widely regarded as the first… …   Wikipedia

  • Cobranet — est un système développé pour transmettre de nombreux canaux audio par un réseau standard Ethernet. Cobranet a été créé initialement par Peak Audio, une petite société de spécialistes en audio. Articles connexes Show control Liens et références… …   Wikipédia en Français

  • CobraNet — est un système développé pour transmettre de nombreux canaux audio par un réseau standard Ethernet. CobraNet a été créé initialement par Peak Audio, une petite société de spécialistes en audio. Articles connexes Show control Liens et références… …   Wikipédia en Français

  • CobraNet — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Audio multicore cable — An audio multicore cable, or most commonly known as a snake is a compact cable, typically about the diameter of a coin, used in the audio recording and entertainment fields, which contains typically 4 64 individual shielded pair microphone cables …   Wikipedia

  • Audio over Ethernet — In audio engineering (and now in broadcast engineering), audio over Ethernet (sometimes AoE) is the concept of using an Ethernet based network to transmit digital audio. It is designed to replace bulky snake cables, and to use the existing wiring …   Wikipedia

  • Cobra Command — Cobra Organization redirects here. For other uses of Cobra Command , see Cobra Command (disambiguation). Cobra Command Logo of Cobra Publication information …   Wikipedia

  • Dante (networking) — Dante Manufacturer Info Manufacturer Audinate Pty Ltd Development date 2006 …   Wikipedia

  • List of companies of Nigeria — This is a list of Nigerian companies. The companies are currently listed by sector. The list is incomplete.Quasi governmental corporations* Central Bank of Nigeria * Federal Department of Antiquities * National Commission for Museum Monuments *… …   Wikipedia

  • Richmond Sound Design — ambox type = content text = This {1|article or section} may be inaccurate or in favor of certain viewpoints. Please [SERVERlocalurl:PAGENAME|action=edit improve the article] by adding information on neglected viewpoints, or discuss the issue on… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”