co-NP-complete

co-NP-complete

In complexity theory, computational problems that are co-NP-complete are those that are the hardest problems in co-NP, in the sense that they are the ones most likely not to be in P. If there exists a way to solve a co-NP-complete problem quickly, then that algorithm can be used to solve all co-NP problems quickly.

Each Co-NP-complete problem is the complement of an NP-complete problem. There are some problems in both NP and co-NP, however it is not known if the sets are equal, although inequality is thought more likely. See co-NP and NP-complete for more details.

Fortune showed in 1979 that if any sparse language is co-NP-complete (or even just co-NP-hard), then P = NP,[1] a critical foundation for Mahaney's theorem.

Formal definition

A decision problem C is co-NP-complete if it is in co-NP and if every problem in co-NP is polynomial-time many-one reducible to it. This means that for every Co-NP problem L, there exists a polynomial time algorithm which can transform any instance of L into an instance of C with the same truth value. As a consequence, if we had a polynomial time algorithm for C, we could solve all co-NP problems in polynomial time.

Example

One simple example of a co-NP-complete problem is tautology, the problem of determining whether a given Boolean formula is a tautology; that is, whether every possible assignment of true/false values to variables yields a true statement. This is closely related to the Boolean satisfiability problem, which asks whether there exists at least one such assignment. Note that the tautology problem for positive Boolean formulae remains co-NP complete, even though the satisfiability problem is trivial, as every positive Boolean formula is satisfiable.

References

  1. ^ S. Fortune. A note on sparse complete sets. SIAM Journal on Computing, volume 8, issue 3, pp.431–433. 1979.



Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Complete Me — Studio album by Frankmusik Released 31 July 2009 ( …   Wikipedia

  • Complete Works of Shakespeare — Complete Works of William Shakespeare is the standard name given to any volume containing all the plays and poems of William Shakespeare. Some editions include several works which were not completely of Shakespeare s authorship (collaborative… …   Wikipedia

  • Complete Clapton — Greatest hits album by Eric Clapton Released October 9, 2007 …   Wikipedia

  • Complete androgen insensitivity syndrome — Classification and external resources AIS results when the function of the androgen receptor (AR) is impaired. The AR protein (pictured) mediates the effects of androgens in the human body. ICD 10 …   Wikipedia

  • Complete Adventurer —   Genre(s) Role playing game Publisher Wizards of the Coast …   Wikipedia

  • Complete Psionic —   Author(s) Bruce R. Cordell and Christopher Lindsay …   Wikipedia

  • Complete graph — K7, a complete graph with 7 vertices Vertices n Edges …   Wikipedia

  • Complete Arcane —   Genre(s) Role playing game Publisher Wizards of the Coast …   Wikipedia

  • Complete Warrior —   Cov …   Wikipedia

  • Complete Divine —   Cover of Complete Divine …   Wikipedia

  • Complete bipartite graph — A complete bipartite graph with m = 5 and n = 3 Vertices n + m Edges mn …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”