# NEXPTIME

NEXPTIME

In computational complexity theory, the complexity class NEXPTIME (sometimes called NEXP) is the set of decision problems that can be solved by a non-deterministic Turing machine using time O(2p(n)) for some polynomial p(n), and unlimited space.

In terms of NTIME,

$\mbox{NEXPTIME} = \bigcup_{k\in\mathbb{N}} \mbox{NTIME}(2^{n^k})$

An important set of NEXPTIME-complete problems relates to succinct circuits. Succinct circuits are simple machines used to describe graphs in exponentially less space. They accept two vertex numbers as input and output whether there is an edge between them. If solving a problem on a graph in a natural representation, such as an adjacency matrix, is NP-complete, then solving the same problem on a succinct circuit representation is NEXPTIME-complete, because the input is exponentially smaller (under some mild condition that the NP-completeness reduction is achieved by a "projection").[1][2] As one simple example, finding a Hamiltonian path for a graph thus encoded is NEXPTIME-complete.

If P = NP, then NEXPTIME = EXPTIME (padding argument); more precisely, ENE if and only if there exist sparse languages in NP that are not in P.[3]

## Alternative characterizations

NEXPTIME often arises in the context of interactive proof systems, where there are two major characterizations of it. The first is the MIP proof system, where we have two all-powerful provers which communicate with a randomized polynomial-time verifier (but not with each other). If the string is in the language, they must be able to convince the verifier of this with high probability. If the string is not in the language, they must not be able to collaboratively trick the verifier into accepting the string except with low probability. The fact that MIP proof systems can solve every problem in NEXPTIME is quite impressive when we consider that when only one prover is present, we can only recognize all of PSPACE; the verifier's ability to "cross-examine" the two provers gives it great power. See interactive proof system#MIP for more details.

Another interactive proof system characterizing NEXPTIME is a certain class of probabilistically checkable proofs. Recall that NP can be seen as the class of problems where an all-powerful prover gives a purported proof that a string is in the language, and a deterministic polynomial-time machine verifies that it is a valid proof. We make two changes to this setup:

• Add randomness, the ability to flip coins, to the verifier machine.
• Instead of simply giving the purported proof to the verifier on a tape, give it random access to the proof. The verifier can specify an index into the proof string and receive the corresponding bit. Since the verifier can write an index of polynomial length, it can potentially index into an exponentially long proof string.

These two extensions together greatly extend the proof system's power, enabling it to recognize all languages in NEXPTIME. The class is called PCP(poly, poly). What more, in this characterization the verifier may be limited to read only a constant number of bits, i.e. NEXPTIME = PCP(poly, 1). See probabilistically checkable proofs for more details.

## References

1. ^ C. Papadimitriou & M. Yannakakis, A note on succinct representations of graphs, Information and control, vol 71 num 3, décember 1986, pp. 181—185, doi:10.1016/S0019-9958(86)80009-2
2. ^ C. Papadimitriou. Computational Complexity Addison-Wesley, 1994. ISBN 0-201-53082-1. Section 20.1, pg.492.
3. ^ Juris Hartmanis, Neil Immerman, Vivian Sewelson. Sparse Sets in NP-P: EXPTIME versus NEXPTIME. Information and Control, volume 65, issue 2/3, pp.158–181. 1985. At ACM Digital Library

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• NEXPTIME — In der Komplexitätstheorie steht NEXPTIME (manchmal auch nur NEXP) für die Komplexitätsklasse der Entscheidungsprobleme, die von einer nichtdeterministischen Turingmaschine in durch O(2p(n)) beschränkter Zeit akzeptiert werden können. p(n) ist… …   Deutsch Wikipedia

• NEXPTIME — En teoría de la complejidad computacional, la clase de complejidad NEXPTIME es el conjunto de los problemas de decisión que pueden ser resueltos en una máquina de Turing no determinista en tiempo O(2p(n)), donde p(n) es una función polinomial… …   Wikipedia Español

• NEXPTIME — En teoría de la complejidad computacional, la clase de complejidad NEXPTIME es el conjunto de los problemas de decisión que pueden ser resueltos en una máquina de Turing no determinista en espacio O(2p(n)), donde p(n) es una función polinomial… …   Enciclopedia Universal

• EXPTIME — EXP redirects here; for other uses, see exp. In computational complexity theory, the complexity class EXPTIME (sometimes called EXP) is the set of all decision problems solvable by a deterministic Turing machine in O(2 p ( n )) time, where p ( n… …   Wikipedia

• Circuits over sets of natural numbers — Circuits over natural numbers is a mathematical model used in studying computational complexity theory. It is a special case of circuit, the object is a labeled directed acyclic graph the nodes of which evaluate to sets of natural numbers, the… …   Wikipedia

• Interactive proof system — In computational complexity theory, an interactive proof system is an abstract machine that models computation as the exchange of messages between two parties. The parties, the verifier and the prover, interact by exchanging messages in order to… …   Wikipedia

• Turingmaschine mit Zusatzeingabe — Eine Turingmaschine mit Zusatzeingabe ist ein zu Nichtdeterministischen Turingmaschinen äquivalentes Berechnungsmodell der Theoretischen Informatik. Inhaltsverzeichnis 1 Informelle Beschreibung 2 Definition 2.1 Turingmaschine mit Zusatzeingabe …   Deutsch Wikipedia

• Complexity class — In computational complexity theory, a complexity class is a set of problems of related resource based complexity. A typical complexity class has a definition of the form: the set of problems that can be solved by an abstract machine M using… …   Wikipedia

• Класс EXPTIME — В теории сложности вычислений, класс сложности EXPTIME (иногда называемый просто EXP) это множество задач, решаемых с помощью детерминированной машины Тьюринга за время O(2p(n)), где p(n) это полиномиальная функция о …   Википедия

• Computational complexity theory — is a branch of the theory of computation in theoretical computer science and mathematics that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. In this context, a… …   Wikipedia