EXPTIME

EXPTIME

:"EXP" redirects here; for other uses, see exp."

In computational complexity theory, the complexity class EXPTIME (sometimes called EXP) is the set of all decision problems solvable by a deterministic Turing machine in O(2"p"("n")) time, where "p"("n") is a polynomial function of "n".

In terms of DTIME,

: mbox{EXPTIME} = igcup_{k in mathbb{N} } mbox{ DTIME } left( 2^{ n^k } ight) .

We know

:P subseteq NP subseteq PSPACE subseteq EXPTIME subseteq NEXPTIME subseteq EXPSPACE

and also, by the time hierarchy theorem and the space hierarchy theorem, that

:P subsetneq EXPTIME and NP subsetneq NEXPTIME and PSPACE subsetneq EXPSPACE

so at least one of the first three inclusions and at least one of the last three inclusions must be proper, but it is not known which ones are. Most experts believe all the inclusions are proper. It's also known that if P = NP, then EXPTIME = NEXPTIME, the class of problems solvable in exponential time by a nondeterministic Turing machine. [cite book | author = Christos Papadimitriou | title = Computational Complexity | publisher = Addison-Wesley | year = 1994 | id = ISBN 0201530821 Section 20.1, page 491.] More precisely, EXPTIMENEXPTIME if and only if there exist sparse languages in NP that are not in P. [Juris Hartmanis, Neil Immerman, Vivian Sewelson. Sparse Sets in NP-P: EXPTIME versus NEXPTIME. "Information and Control", volume 65, issue 2/3, pp.158–181. 1985. [http://portal.acm.org/citation.cfm?id=808769 At ACM Digital Library] ]

EXPTIME can also be reformulated as the space class APSPACE, the problems that can be solved by an alternating Turing machine in polynomial space. This is one way to see that PSPACE subseteq EXPTIME, since an alternating Turing machine is at least as powerful as a deterministic Turing machine. [Papadimitriou (1994), section 20.1, corollary 3, page 495.]

EXPTIME is one class in a hierarchy of complexity classes with increasingly higher time bounds. The class 2-EXPTIME is defined similarly to EXPTIME but with a doubly-exponential time bound 2^{2^n}. This can be generalized to higher and higher time bounds.

EXPTIME-complete

A decision problem is EXPTIME-complete if it is in EXPTIME, and every problem in EXPTIME has a polynomial-time many-one reduction to it. In other words, there is a polynomial-time algorithm that transforms instances of one to instances of the other with the same answer. Problems that are EXPTIME-complete might be thought of as the hardest problems in EXPTIME. Notice that although we don't know if NP is a subset of P or not, we do know that EXPTIME-complete problems are not in P; it has been proven that these problems cannot be solved in polynomial time.Fact|date=May 2008

In computability theory, one of the basic undecidable problems is that of deciding whether a deterministic Turing machine (DTM) halts. One of the most fundamental EXPTIME-complete problems is a simpler version of this, which asks if a DTM halts in at most "k" steps. It is in EXPTIME because a trivial simulation requires O("k") time, and the input "k" is encoded using O(log "k") bits. [cite web | author = Chris Umans | url = http://www.cs.caltech.edu/~umans/cs21/lec16.pdf | title = CS 21: Lecture 16 notes Slide 21.] It is EXPTIME-complete because, roughly speaking, we can use it to determine if a machine solving an EXPTIME problem accepts in an exponential number of steps; it will not use more.

Other examples of EXPTIME-complete problems include the problem of evaluating a position in generalized chess,cite journal | author = Aviezri Fraenkel and D. Lichtenstein | title = Computing a perfect strategy for n×n chess requires time exponential in n | journal = J. Comb. Th. A | issue = 31 | year = 1981 | pages = 199–214] checkers,cite journal | author = J. M. Robson | title = N by N checkers is Exptime complete | journal = SIAM Journal on Computing, | volume = 13 | issue = 2 | pages = 252–267 | year = 1984 | doi = 10.1137/0213018 ] or Go (with Japanese ko rules). [Cite book | author = J. M. Robson | chapter = The complexity of Go | title = Information Processing; Proceedings of IFIP Congress | year = 1983 | pages = 413–417] These games have a chance of being EXPTIME-complete because games can last for a number of moves that is exponential in the size of the board. In the Go example, the Japanese ko rule is sufficiently intractable to imply EXPTIME-completeness, but it is not known if the more tractable American or Chinese rules for the game are EXPTIME-complete.

By contrast, generalized games that can last for a number of moves that is polynomial in the size of the board are often PSPACE-complete. The same is true of exponentially long games in which non-repetition is automatic.

Another set of important EXPTIME-complete problems relates to succinct circuits. Succinct circuits are simple machines used to describe graphs in exponentially less space. They accept two vertex numbers as input and output whether there is an edge between them. If solving a problem on a graph in a natural representation, such as an adjacency matrix, is P-complete, then solving the same problem on a succinct circuit representation is EXPTIME-complete, because the input is exponentially smaller. [Papadimitriou (1994), section 20.1, page 492.]

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • EXPTIME — En teoría de la complejidad computacional, la clase de complejidad EXPTIME (también llamada EXP) es el conjunto de los problemas de decisión que pueden ser resueltos en una máquina de Turing determinista en tiempo O(2p(n)), donde p(n) es una… …   Wikipedia Español

  • EXPTIME — In der Komplexitätstheorie steht EXPTIME (manchmal auch nur EXP) für die Komplexitätsklasse der Entscheidungsprobleme, die von einer deterministischen Turingmaschine in durch beschränkter Zeit entschieden werden können. ist dabei ein beliebiges… …   Deutsch Wikipedia

  • EXPTIME — Класс сложности EXPTIME В теории сложности вычислений, класс сложности EXPTIME (иногда называемый просто EXP) это множество задач, решаемых с помощью детерминированной машины Тьюринга за время O(2p(n)), где p(n) это полиномиальная функция от n.… …   Википедия

  • EXPTIME — En teoría de la complejidad computacional, la clase de complejidad EXPTIME (también llamada EXP) es el conjunto de los problemas de decisión que pueden ser resueltos en una máquina de Turing determinista en tiempo O(2p(n)), donde p(n) es una… …   Enciclopedia Universal

  • 2-EXPTIME — In computational complexity theory, the complexity class 2 EXPTIME (sometimes called 2 EXP) is the set of all decision problems solvable by a deterministic Turing machine in O(22 p ( n )) time, where p ( n ) is a polynomial function of n .In… …   Wikipedia

  • Класс EXPTIME — В теории сложности вычислений, класс сложности EXPTIME (иногда называемый просто EXP) это множество задач, решаемых с помощью детерминированной машины Тьюринга за время O(2p(n)), где p(n) это полиномиальная функция о …   Википедия

  • Game complexity — Combinatorial game theory has several ways of measuring game complexity. This article describes five of them: state space complexity, game tree size, decision complexity, game tree complexity, and computational complexity. Contents 1 Measures of… …   Wikipedia

  • Complejidad en los juegos — Este artículo o sección sobre ocio necesita ser wikificado con un formato acorde a las convenciones de estilo. Por favor, edítalo para que las cumpla. Mientras tanto, no elimines este aviso puesto el 11 de junio de 2008. También puedes ayudar… …   Wikipedia Español

  • Lógica de descripción — Las lógicas de descripción, también llamadas lógicas descriptivas (DL por description logics) son una familia de lenguajes de representación del conocimiento que pueden ser usados para representar conocimiento terminológico de un dominio de… …   Wikipedia Español

  • Teorema de la jerarquía temporal — En la teoría de complejidad computacional, los teoremas de jerarquía temporal son declaraciones importantes sobre cómputo de tiempo acotado en máquinas de Turing. Informalmente, estos teoremas dicen que con más tiempo, una máquina de Turing puede …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”