Hilbert's Nullstellensatz

Hilbert's Nullstellensatz

Hilbert's Nullstellensatz (German: "theorem of zeros," or more literally, "zero-locus-theorem" – see Satz) is a theorem which establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry, an important branch of mathematics. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert who proved Nullstellensatz and several other important related theorems named after him (like Hilbert's basis theorem).

Contents

Formulation

Let k be a field (such as the rational numbers) and K be an algebraically closed field extension (such as the complex numbers), consider the polynomial ring k[X1,X2,..., Xn] and let I be an ideal in this ring. The affine variety V(I) defined by this ideal consists of all n-tuples x = (x1,...,xn) in Kn such that f(x) = 0 for all f in I. Hilbert's Nullstellensatz states that if p is some polynomial in k[X1,X2,..., Xn] which vanishes on the variety V(I), i.e. p(x) = 0 for all x in V(I), then there exists a natural number r such that pr is in I.

An immediate corollary is the "weak Nullstellensatz": The ideal I in k[X1,X2,..., Xn] contains 1 if and only if the polynomials in I do not have any common zeros in Kn.

When k=K the "weak Nullstellensatz" may also be stated as follows: if I is a proper ideal in K[X1,X2,..., Xn], then V(I) cannot be empty, i.e. there exists a common zero for all the polynomials in the ideal. This is the reason for the name of the theorem, which can be proved easily from the 'weak' form using the Rabinowitsch trick. The assumption that K be algebraically closed is essential here; the elements of the proper ideal (X2 + 1) in R[X] do not have a common zero. With the notation common in algebraic geometry, the Nullstellensatz can also be formulated as

\hbox{I}(\hbox{V}(J))=\sqrt{J}

for every ideal J. Here, \sqrt{J} denotes the radical of J and I(U) is the ideal of all polynomials which vanish on the set U.

In this way, we obtain an order-reversing bijective correspondence between the affine varieties in Kn and the radical ideals of K[X1,X2,..., Xn]. In fact, more generally, one has a Galois connection between subsets of the space and subsets of the algebra, where "Zariski closure" and "radical of the ideal generated" are the closure operators.

Generalization

This generalization is due to Bourbaki, and is the most general form of the Nullstellensatz.

Let R be a Jacobson ring. If S is a finitely generated R-algebra, then S is a Jacobson ring. Further, if \mathfrak{n}\subset S is a maximal ideal, then \mathfrak{m} := \mathfrak{n} \cap R is a maximal ideal of R, and S/\mathfrak{n} is a finite extension field of R/\mathfrak{m}.

Another generalization states that a faithfully flat morphism f: Y \to X locally of finite type with X quasi-compact has a quasi-section, i.e. there exists X' affine and faithfully flat and quasi-finite over X together with an X-morphism X' \to Y.

Applications

Commuting matrices

The fact that commuting matrices have a common eigenvector – and hence by induction stabilize a common flag and are simultaneously triangularizable – can be interpreted as a result of the weak Nullstellensatz, as follows: commuting matrices form a commutative algebra

K[A_1,\ldots,A_k] over K[x_1,\ldots,x_k];

the matrices satisfy various polynomials such as their minimal polynomials, which form a proper ideal (because they are not all zero, in which case the result is trivial); one might call this the characteristic ideal, by analogy with the characteristic polynomial.

One then defines an eigenvector for a commutative algebra as a vector v such that for all x \in A one has x(v) = \lambda(x)\cdot v for a linear functional

\lambda\colon A \to K.

This simply linearizes the definition of an eigenvalue, and is the correct definition for a common eigenvector, as if v is a common eigenvector, meaning Ai(v) = λiv, then the functional is defined as

\textstyle{\lambda(c_0 I + c_1 A_1 + \cdots c_k A_k) := c_0 + \sum c_i \lambda_i}

(treating scalars as multiples of the identity matrix A0: = I, which has eigenvalue 1 for all vectors), and conversely an eigenvector for such a functional λ is a common eigenvector. Geometrically, the eigenvalue corresponds to the point in affine k-space with coordinates (\lambda_1,\ldots,\lambda_k) with respect to the basis given by Ai.

Then the existence of an eigenvalue λ is equivalent to the ideal generated by (the relations satisfied by) Ai being non-empty, which exactly generalizes the usual proof of existence of an eigenvalue existing for a single matrix over an algebraically closed field by showing that the characteristic polynomial has a zero.

See also

References

  • Shigeru Mukai; William Oxbury (translator) (2003). An Introduction to Invariants and Moduli. Cambridge studies in advanced mathematics. 81. p. 82. ISBN 0-521-80906-1. 
  • David Eisenbud, Commutative Algebra With a View Toward Algebraic Geometry, New York : Springer-Verlag, 1999.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • HILBERT (D.) — Le mathématicien allemand David Hilbert a ouvert la voie à plusieurs générations de chercheurs et a joué un rôle important dans l’élaboration des idées, non seulement dans sa spécialité, mais dans le cadre d’une réflexion générale sur la science …   Encyclopédie Universelle

  • Hilbert — ist der Familienname folgender Personen: Andy Hilbert (* 1981), US amerikanischer Eishockeyspieler Anton Hilbert (1898–1986), deutscher Politiker (CDU) Carl Aage Hilbert (1899–1953), dänischer Jurist und Gouverneur der Färöer David Hilbert… …   Deutsch Wikipedia

  • Nullstellensatz — Théorème des zéros de Hilbert Le théorème des zéros de Hilbert, parfois appelé Nullstellensatz, est un théorème central de géométrie algébrique qui fait le lien entre les idéaux et les variétés algébriques. Il a été démontré par le mathématicien… …   Wikipédia en Français

  • Hilbert Nullstellensatz — El Hilbert Nullstellensatz (en alemán: teorema de los ceros ) es un teorema en Geometría algebraica que relaciona variedades e ideales en anillos de polinomios sobre cuerpos algebraicamente cerrados. Fue probado inicialmente por David Hilbert.… …   Enciclopedia Universal

  • David Hilbert — Hilbert redirects here. For other uses, see Hilbert (disambiguation). David Hilbert David Hilbert (1912) Born …   Wikipedia

  • Théorème des zéros de Hilbert — Le théorème des zéros de Hilbert, parfois appelé Nullstellensatz, est un théorème d algèbre commutative qui est à la base du lien entre les idéaux et les variétés algébriques. Il a été démontré par le mathématicien allemand David Hilbert.… …   Wikipédia en Français

  • David Hilbert — (1912) David Hilbert (* 23. Januar 1862 in Königsberg[1]; † 14. Februar 1943 in Göttingen) war ein deutscher Mathematiker. Er gilt als einer der bedeutendsten Mathematiker der Neuzeit. Viele seiner Arbeiten auf dem Gebiet der Mathematik u …   Deutsch Wikipedia

  • Teorema de los ceros de Hilbert — El Hilberts Nullstellensatz (en alemán: teorema de los lugares de los ceros ) es un teorema en Geometría algebraica que relaciona variedades e ideales en anillos de polinomios sobre cuerpos algebraicamente cerrados. Fue probado inicialmente por… …   Wikipedia Español

  • Hilberts Nullstellensatz — Der Hilbertsche Nullstellensatz stellt in der Mathematik in der klassischen algebraischen Geometrie die zentrale Verbindung zwischen Idealen und affinen algebraischen Varietäten her. Er wurde von David Hilbert bewiesen. Es gibt verschiedene… …   Deutsch Wikipedia

  • Theoreme des zeros de Hilbert — Théorème des zéros de Hilbert Le théorème des zéros de Hilbert, parfois appelé Nullstellensatz, est un théorème central de géométrie algébrique qui fait le lien entre les idéaux et les variétés algébriques. Il a été démontré par le mathématicien… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”