# Metric tensor (general relativity)

Metric tensor (general relativity)
Metric tensor of spacetime in general relativity written as a matrix.

In general relativity, the metric tensor (or simply, the metric) is the fundamental object of study. It may loosely be thought of as a generalization of the gravitational field familiar from Newtonian gravitation. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as distance, volume, curvature, angle, future and past.

Notation and conventions: Throughout this article we work with a metric signature that is mostly positive (− + + +); see sign convention. As is customary in relativity, units are used where the speed of light c = 1. The gravitation constant G will be kept explicit. The summation convention, where repeated indices are automatically summed over, is employed.

## Definition

Mathematically, spacetime is represented by a 4-dimensional differentiable manifold M and the metric is given as a covariant, second-rank, symmetric tensor on M, conventionally denoted by g. Moreover the metric is required to be nondegenerate with signature (-+++). A manifold M equipped with such a metric is called a Lorentzian manifold.

Explicitly, the metric is a symmetric bilinear form on each tangent space of M which varies in a smooth (or differentiable) manner from point to point. Given two tangent vectors u and v at a point x in M, the metric can be evaluated on u and v to give a real number:

$g_x(u,v) = g_x(v,u) \in \mathbb{R}.$

This can be thought of as a generalization of the dot product in ordinary Euclidean space. This analogy is not exact, however. Unlike Euclidean space — where the dot product is positive definite — the metric gives each tangent space the structure of Minkowski space.

## Local coordinates and matrix representations

Physicists usually work in local coordinates (i.e. coordinates defined on some local patch of M). In local coordinates xμ (where μ is an index which runs from 0 to 3) the metric can be written in the form

$g = g_{\mu\nu} dx^\mu \otimes dx^\nu.$

The factors dxμ are one-form gradients of the scalar coordinate fields xμ. The metric is thus a linear combination of tensor products of one-form gradients of coordinates. The coefficients gμν are a set of 16 real-valued functions (since the tensor g is actually a tensor field defined at all points of a spacetime manifold). In order for the metric to be symmetric we must have

$g_{\mu\nu} = g_{\nu\mu}\,$

giving 10 independent coefficients. If we denote the symmetric tensor product by juxtaposition (so that dxμdxν = dxνdxμ) we can write the metric in the form

$g = g_{\mu\nu}dx^\mu dx^\nu.\,$

If the local coordinates are specified, or understood from context, the metric can be written as a 4×4 symmetric matrix with entries gμν. The nondegeneracy of gμν means that this matrix is non-singular (i.e. has non-vanishing determinant), while the Lorentzian signature of g implies that the matrix has one negative and three positive eigenvalues. Note that physicists often refer to this matrix or the coordinates gμν themselves as the metric (see, however, abstract index notation).

With the quantity dxμ being an infinitesimal coordinate displacement, the metric acts as an infinitesimal invariant interval squared or line element. For this reason one often sees the notation ds2 for the metric:

$ds^2 = g_{\mu\nu}dx^\mu dx^\nu.\,$

In general relativity, the terms metric and line element are often used interchangeably.

The line element ds2 imparts information about the causal structure of the spacetime. When ds2 < 0, the interval is timelike and the square root of the absolute value of ds2 is an incremental proper time. Only timelike intervals can be physically traversed by a massive object. When ds2 = 0, the interval is lightlike, and can only be traversed by light. When ds2 > 0, the interval is spacelike and the square root of ds2 acts as an incremental proper length. Spacelike intervals cannot be traversed, since they connect events that are out of each other's light cones. Events can be causally related only if they are within each other's light cones.

The metric components obviously depend on the chosen local coordinate system. Under a change of coordinates $x^\mu \to x^{\bar \mu}$ the metric components transform as

$g_{\bar \mu \bar \nu} = \frac{\partial x^\rho}{\partial x^{\bar \mu}}\frac{\partial x^\sigma}{\partial x^{\bar \nu}} g_{\rho\sigma} = \Lambda^\rho {}_{\bar \mu} \, \Lambda^\sigma {}_{\bar \nu} \, g_{\rho \sigma} .$

## Examples

### Flat spacetime

The simplest example of a Lorentzian manifold is flat spacetime which can be given as R4 with coordinates (t,x,y,z) and the metric

$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2.\,$

Note that these coordinates actually cover all of R4. The flat space metric (or Minkowski metric) is often denoted by the symbol η and is the metric used in special relativity. In the above coordinates, the matrix representation of η is

$\eta = \begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}$

In spherical coordinates (t,r,θ,ϕ), the flat space metric takes the form

$ds^2 = -dt^2 + dr^2 + r^2d\Omega^2\,$

where

$d\Omega^2 = d\theta^2 + \sin^2\theta\,d\phi^2$

is the standard metric on the 2-sphere.

### Schwarzschild metric

Besides the flat space metric the most important metric in general relativity is the Schwarzschild metric which can be given in one set of local coordinates by

$ds^{2} = -\left(1-\frac{2GM}{r} \right)dt^2 + \left(1-\frac{2GM}{r}\right)^{-1}dr^2+ r^2 d\Omega^2$

where, again, dΩ2 is the standard metric on the 2-sphere. Here G is the gravitation constant and M is a constant with the dimensions of mass. Its derivation can be found here. The Schwarzschild metric approaches the Minkowski metric as M approaches zero (except at the origin where it is undefined). Similarly, when r goes to infinity, the Schwarzschild metric approaches the Minkowski metric.

### Other metrics

Other notable metrics are Eddington–Finkelstein coordinates, Friedmann–Lemaître–Robertson–Walker metric, Gullstrand–Painlevé coordinates, Isotropic coordinates, Kerr metric, Kerr–Newman metric, Kruskal–Szekeres coordinates, Lemaitre metric, Reissner–Nordström metric, Rindler coordinates. Some of them are without the event horizon [1] or can be without the gravitational singularity.

## Volume

The metric g defines a natural volume form, which can be used to integrate over spacetimes. In local coordinates xμ of a manifold, the volume form can be written

$\mathrm{vol}_g = \sqrt{|\det g|}\,dx^0\wedge dx^1\wedge dx^2\wedge dx^3$

where det g is the determinant of the matrix of components of the metric tensor for the given coordinate system.

## Curvature

The metric g completely determines the curvature of spacetime. According to the fundamental theorem of Riemannian geometry, there is a unique connection ∇ on any semi-Riemannian manifold that is compatible with the metric and torsion-free. This connection is called the Levi-Civita connection. The Christoffel symbols of this connection are given in terms of partial derivatives of the metric in local coordinates xμ by the formula

$\Gamma^\lambda {}_{\mu\nu} = {1 \over 2} g^{\lambda\rho} \left( {\partial g_{\rho\mu} \over \partial x^\nu} + {\partial g_{\rho\nu} \over \partial x^\mu} - {\partial g_{\mu\nu} \over \partial x^\rho} \right)$.

The curvature of spacetime is then given by the Riemann curvature tensor which is defined in terms of the Levi-Civita connection ∇. In local coordinates this tensor is given by:

${R^\rho}_{\sigma\mu\nu} = \partial_\mu\Gamma^\rho {}_{\nu\sigma} - \partial_\nu\Gamma^\rho {}_{\mu\sigma} + \Gamma^\rho {}_{\mu\lambda}\Gamma^\lambda {}_{\nu\sigma} - \Gamma^\rho {}_{\nu\lambda}\Gamma^\lambda {}_{\mu\sigma}.$

The curvature is then expressible purely in terms of the metric g and its derivatives.

## Einstein's equations

One of the core ideas of general relativity is that the metric (and the associated geometry of spacetime) is determined by the matter and energy content of spacetime. Einstein's field equations:

$R_{\mu\nu} - {1\over 2}R g_{\mu\nu} = 8\pi G\,T_{\mu\nu}$

where

$R_{\nu \rho} \ \stackrel{\mathrm{def}}{=}\ {R^{\mu}}_{\nu\mu \rho}$

relate the metric (and the associated curvature tensors) to the stress-energy tensor Tμν. This tensor equation is a complicated set of nonlinear partial differential equations for the metric components. Exact solutions of Einstein's field equations are very difficult to find.

## References

1. ^ D. J. Leiter and S. L. Robertson, "Einstein revisited: Gravitation in curved spacetime without event horizons". Submitted to General Relativity and Gravitation on January 2001.

See general relativity resources for a list of references.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Riemann tensor (general relativity) — The Riemann tensor (general relativity) is a mathematical object that describes gravitation and its effects in Einstein s theory of general relativity. Curvature and geodesic deviationThe Riemann tensor can be used to express the idea of… …   Wikipedia

• Metric tensor — In the mathematical field of differential geometry, a metric tensor is a type of function defined on a manifold (such as a surface in space) which takes as input a pair of tangent vectors v and w and produces a real number (scalar) g(v,w) in a… …   Wikipedia

• Mathematics of general relativity — For a generally accessible and less technical introduction to the topic, see Introduction to mathematics of general relativity. General relativity Introduction Mathematical formulation Resources …   Wikipedia

• General relativity — For a generally accessible and less technical introduction to the topic, see Introduction to general relativity. General relativity Introduction Mathematical formulation Resources …   Wikipedia

• General relativity resources — BooksPopular*cite book | author=Geroch, Robert | authorlink = Robert Geroch| title=General Relativity from A to B | location=Chicago | publisher=University of Chicago Press | year=1981 | id=ISBN 0 226 28864 1 Leisurely pace, provides superb… …   Wikipedia

• Introduction to general relativity — General relativity (GR) is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915. According to general relativity, the observed gravitational attraction between masses results from the warping of space and time by… …   Wikipedia

• Mass in general relativity — General relativity Introduction Mathematical formulation Resources Fundamental concepts …   Wikipedia

• Contributors to general relativity — General relativity Introduction Mathematical formulation Resources Fundamental concepts …   Wikipedia

• Alternatives to general relativity — are physical theories that attempt to describe the phenomena of gravitation in competition to Einstein s theory of general relativity.There have been many different attempts at constructing an ideal theory of gravity. These attempts can be split… …   Wikipedia

• History of general relativity — Creation of General Relativity Early investigations As Albert Einstein later said, the reason for the development of general relativity was that the preference of inertial motions within special relativity was unsatisfactory, while a theory which …   Wikipedia