- Church–Kleene ordinal
-
In mathematics, the Church–Kleene ordinal, , is a large countable ordinal. It is the smallest non-recursive ordinal. It is named after Alonzo Church and S. C. Kleene.
References
- Church, Alonzo; Kleene, S. C. (1937), "Formal definitions in the theory of ordinal numbers.", Fundamenta mathematicae, Warszawa, 28: 11–21, JFM 63.0029.02
- Church, Alonzo (1938), "The constructive second number class", Bull. Amer. Math. Soc. 44 (4): 224–232, doi:10.1090/S0002-9904-1938-06720-1, http://www.ams.org/bull/1938-44-04/S0002-9904-1938-06720-1/
- Kleene, S. C. (1938), "On Notation for Ordinal Numbers", The Journal of Symbolic Logic (The Journal of Symbolic Logic, Vol. 3, No. 4) 3 (4): 150–155, doi:10.2307/2267778, JSTOR 2267778
- Rogers, Hartley (1987) [1967], The Theory of Recursive Functions and Effective Computability, First MIT press paperback edition, ISBN 978-0-262-68052-3
ω · ε0 · Feferman–Schütte ordinal Γ0 · Ackermann ordinal · small Veblen ordinal · large Veblen ordinal · Bachmann–Howard ordinal · Ψ0(Ωω) · Church–Kleene ordinal ω1CKThis set theory-related article is a stub. You can help Wikipedia by expanding it.