Bachmann–Howard ordinal

Bachmann–Howard ordinal

In mathematics, the Bachmann–Howard ordinal (or Howard ordinal) is a large countable ordinal.It is the proof theoretic ordinal of several mathematical theories, such as Kripke–Platek set theory (with the axiom of infinity) and the system CZF of constructive set theory.It is named after William Alvin Howard and Heinz Bachmann.

Definition

The Bachmann-Howard ordinal is defined using an ordinal collapsing function (with more details given in the relevant article):
α enumerates the epsilon numbers, the ordinals β with ωβ = β.
*Ω = ω1 is the first uncountable ordinal.
Ω+1 is the first epsilon number after Ω = εΩ.
*ψ(α) is defined to be the smallest ordinal that cannot be constructed by starting with 0, 1, ω and Ω, and repeatedly applying ordinal addition, multiplication and exponentiation, and ψ to previously constructed ordinals (except that ψ can only be applied to arguments less than α, to ensure that it is well defined).
*The Bachmann-Howard ordinal is ψ(εΩ+1).

The Bachmann-Howard ordinal can also be defined as phi_{epsilon_{Omega+1(0) for an extension of the Veblen functions φα to uncountable α; this extension is not completely straightforward.

References

*citation|id=MR|0036806
last=Bachmann|first= Heinz
title=Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen
journal=Vierteljschr. Naturforsch. Ges. Zürich |volume=95|year=1950|pages= 115-147

*citation|id=MR|0329869
last=Howard|first= W. A.
title=A system of abstract constructive ordinals.
journal=J. Symbolic Logic |volume=37 |year=1972|pages= 355-374
url=http://links.jstor.org/sici?sici=0022-4812%28197206%2937%3A2%3C355%3AASOACO%3E2.0.CO%3B2-Y

*citation|last=Pohlers|first=Wolfram |title=Proof theory|id=MR|1026933
series= Lecture Notes in Mathematics|volume= 1407|publisher= Springer-Verlag|place= Berlin|year= 1989|ISBN= 3-540-51842-8

* (slides of a talk given at Fischbachau)


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Ordinal collapsing function — In mathematical logic and set theory, an ordinal collapsing function (or projection function) is a technique for defining (notations for) certain recursive large countable ordinals, whose principle is to give names to certain ordinals much larger …   Wikipedia

  • Ordinal analysis — In proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. The field was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that… …   Wikipedia

  • Ordinal number — This article is about the mathematical concept. For number words denoting a position in a sequence ( first , second , third , etc.), see Ordinal number (linguistics). Representation of the ordinal numbers up to ωω. Each turn of the spiral… …   Wikipedia

  • Large countable ordinal — In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of… …   Wikipedia

  • William Alvin Howard — (né en 1926) est un logicien américain. Il est surtout connu en théorie de la démonstration et théorie de la calculabilité, pour avoir établi une correspondance entre la logique intuitionniste et le lambda calcul typé, résultat connu sous le nom… …   Wikipédia en Français

  • Church–Kleene ordinal — In mathematics, the Church–Kleene ordinal, , is a large countable ordinal. It is the smallest non recursive ordinal. It is named after Alonzo Church and S. C. Kleene. References Church, Alonzo; Kleene, S. C. (1937), Formal definitions in the… …   Wikipedia

  • William Alvin Howard — (1926 ) is a proof theorist most well known for his work demonstrating formal similarity between intuitionistic logic and the simply typed lambda calculus that has come to be known as the Curry Howard correspondence. He has also been active in… …   Wikipedia

  • Hiérarchie de croissance rapide — En théorie de la calculabilité et en théorie de la démonstration, une hiérarchie de croissance rapide (parfois appelée une hiérarchie de Grzegorczyk (en) étendue) est une famille, indexée par les ordinaux, de fonctions rapidement croissantes …   Wikipédia en Français

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Scientific phenomena named after people — This is a list of scientific phenomena and concepts named after people (eponymous phenomena). For other lists of eponyms, see eponym. NOTOC A* Abderhalden ninhydrin reaction Emil Abderhalden * Abney effect, Abney s law of additivity William de… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”