- Bachmann–Howard ordinal
In mathematics, the Bachmann–Howard ordinal (or Howard ordinal) is a
large countable ordinal .It is the proof theoretic ordinal of several mathematical theories, such asKripke–Platek set theory (with theaxiom of infinity ) and the system CZF ofconstructive set theory .It is named afterWilliam Alvin Howard andHeinz Bachmann .Definition
The Bachmann-Howard ordinal is defined using an
ordinal collapsing function (with more details given in the relevant article):
*εα enumerates the epsilon numbers, the ordinals β with ωβ = β.
*Ω = ω1 is the first uncountable ordinal.
*εΩ+1 is the first epsilon number after Ω = εΩ.
*ψ(α) is defined to be the smallest ordinal that cannot be constructed by starting with 0, 1, ω and Ω, and repeatedly applying ordinal addition, multiplication and exponentiation, and ψ to previously constructed ordinals (except that ψ can only be applied to arguments less than α, to ensure that it is well defined).
*The Bachmann-Howard ordinal is ψ(εΩ+1).The Bachmann-Howard ordinal can also be defined as for an extension of the
Veblen function s φα to uncountable α; this extension is not completely straightforward.References
*citation|id=MR|0036806
last=Bachmann|first= Heinz
title=Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen
journal=Vierteljschr. Naturforsch. Ges. Zürich |volume=95|year=1950|pages= 115-147
*citation|id=MR|0329869
last=Howard|first= W. A.
title=A system of abstract constructive ordinals.
journal=J. Symbolic Logic |volume=37 |year=1972|pages= 355-374
url=http://links.jstor.org/sici?sici=0022-4812%28197206%2937%3A2%3C355%3AASOACO%3E2.0.CO%3B2-Y
*citation|last=Pohlers|first=Wolfram |title=Proof theory|id=MR|1026933
series= Lecture Notes in Mathematics|volume= 1407|publisher= Springer-Verlag|place= Berlin|year= 1989|ISBN= 3-540-51842-8
* (slides of a talk given at Fischbachau)
Wikimedia Foundation. 2010.