- Small Veblen ordinal
In mathematics, the small Veblen ordinal is a certain
large countable ordinal , named afterOswald Veblen . It is occasionally called the Ackermann ordinal, though theAckermann ordinal described by harvtxt|Ackermann|1951 is somewhat smaller than the small Veblen ordinal.Unfortunately there is no standard notation for ordinals beyond the Feferman–Schütte ordinal Γ0. Most systems of notation use symbols such as ψ(α), θ(α), ψα(β), some of which are modifications of the
Veblen function s to produce countable ordinals even for uncountable arguments, and some of which are "collapsing function s".The small Veblen ordinal or or is the limit of ordinals that can be described using a version of
Veblen function s with finitely many arguments. It is the ordinal that measures the strength ofKruskal's theorem . It is also the ordinal type of a certain ordering of rooted trees harv|Jervel|2005.References
*citation|id=MR|0039669
last=Ackermann|first= Wilhelm
title=Konstruktiver Aufbau eines Abschnitts der zweiten Cantorschen Zahlenklasse
journal=Math. Z. |volume=53|year=1951|pages= 403-413|doi= 10.1007/BF01175640
*citation|chapter= Finite Trees as Ordinals
first=Herman Ruge |last=Jervel
series= Lecture Notes in Computer Science
publisher =Springer |place=Berlin / Heidelberg
ISSN = 1611-3349
volume =3526
title=New Computational Paradigms
DOI 10.1007/b136981
year=2005
ISBN =978-3-540-26179-7
DOI =10.1007/11494645_26
pages =211-220
*citation|id=MR|1212407
last=Rathjen|first= Michael|last2= Weiermann|first2= Andreas
title=Proof-theoretic investigations on Kruskal's theorem
journal=Ann. Pure Appl. Logic|volume= 60 |year=1993|issue= 1|pages= 49-88
doi=10.1016/0168-0072(93)90192-G
*citation|title= Continuous Increasing Functions of Finite and Transfinite Ordinals
first= Oswald |last=Veblen
journal= Transactions of the American Mathematical Society|volume= 9|issue= 3|year= 1908|pages=280-292
url= http://links.jstor.org/sici?sici=0002-9947%28190807%299%3A3%3C280%3ACIFOFA%3E2.0.CO%3B2-1
*citation|last=Weaver|first=Nik|url=http://arxiv.org/abs/math/0509244|title=Predicativity beyond Gamma_0|year=2005
Wikimedia Foundation. 2010.