Mills' constant

Mills' constant

In number theory, Mills' constant is defined as the smallest positive real number A such that the floor of the double exponential function

 \lfloor A^{3^{n}} \rfloor

is a prime number, for all positive integers n. This constant is named after William H. Mills who proved in 1947 the existence of A based on results of Guido Hoheisel and Albert Ingham on the prime gaps. Its value is unknown, but if the Riemann hypothesis is true it is approximately 1.3063778838630806904686144926... (sequence A051021 in OEIS).

Contents

Mills primes

The primes generated by Mills' constant are known as Mills primes; if the Riemann hypothesis is true, the sequence begins

2, 11, 1361, 2521008887... (sequence A051254 in OEIS).

If a(i) denotes the ith prime in this sequence, then a(i) can be calculated as the smallest prime number larger than a(i −1)3. In order to ensure that rounding A3n, for n = 1, 2, 3, ..., produces this sequence of primes, it must be the case that a(i) < (a(i −1) + 1)3. The Hoheisel-Ingham results guarantee that there exists a prime between any two sufficiently large cubic numbers, which is sufficient to prove this inequality if we start from a sufficiently large first prime a(1). The Riemann hypothesis implies that there exists a prime between any two consecutive cubes, allowing the sufficiently large condition to be removed, and allowing the sequence of Mills' primes to begin at a(1) = 2.

Currently, the largest known Mills prime (under the Riemann hypothesis) is

\displaystyle (((((((((2^3+3)^3+30)^3+6)^3+80)^3+12)^3+450)^3+894)^3+3636)^3+70756)^3+97220,

which is 20,562 digits long.

Numerical calculation

By calculating the sequence of Mills primes, one can approximate Mills' constant as

A\approx a(n)^{1/3^n}.

Caldwell & Cheng (2005) used this method to compute almost seven thousand base 10 digits of Mills' constant under the assumption that the Riemann hypothesis is true. There is no closed-form formula known for Mills' constant, and it is not even known whether this number is rational (Finch 2003).

See also

References

  • Finch, Steven R. (2003), "Mills' Constant", Mathematical Constants, Cambridge University Press, pp. 130–133, ISBN 0521818052 .

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Mills — is the plural form of mill, but may also refer to: Mills (surname), a common family name of English or Gaelic origin Mills (fictional agent), a fictional British secret agent created by Manning O Brine Another name for the board game Nine Men s… …   Wikipedia

  • Mills Novelty Company — Mills Novelty Company, Incorporated Industry slot machines, vending machines and juke boxes Fate Divestment (jukeboxes); divestment and merger (slot machines); and acquisition (vending machines) Successor Mills Novelty Co. Restores sells violanos …   Wikipedia

  • Constant Lambert — Leonard Constant Lambert Constant Lambert. Retrato realizado por Christopher Wood (1926) …   Wikipedia Español

  • Teorema de Mills — En matemáticas, el teorema de Mills afirma que Existe una constante θ tal que es un número primo para todos los números naturales . donde θ indica una constante m …   Wikipedia Español

  • Constante De Mills — En mathématiques, la constante de Mills est définie comme étant le plus petit nombre réel θ tel que la partie entière de est un nombre premier, pour tout entier n positif. Sa valeur est approximativement : [1] …   Wikipédia en Français

  • Constante de mills — En mathématiques, la constante de Mills est définie comme étant le plus petit nombre réel θ tel que la partie entière de est un nombre premier, pour tout entier n positif. Sa valeur est approximativement : [1] …   Wikipédia en Français

  • Théorème de Mills — Constante de Mills En mathématiques, la constante de Mills est définie comme étant le plus petit nombre réel θ tel que la partie entière de est un nombre premier, pour tout entier n positif. Sa valeur est approximativement : [1] …   Wikipédia en Français

  • Constante de Mills — En mathématiques, la constante de Mills est définie comme étant le plus petit nombre réel θ tel que la partie entière de est un nombre premier, pour tout entier n positif. Sous l hypothèse de Riemann, sa valeur est approximativement : [1] …   Wikipédia en Français

  • Mathematical constant — A mathematical constant is a special number, usually a real number, that is significantly interesting in some way .[1] Constants arise in many different areas of mathematics, with constants such as e and π occurring in such diverse contexts as… …   Wikipedia

  • Ossian Everett Mills — Born February 16, 1856 Thompson, Connecticut Died December 26, 1920 Wellesley, Massachusetts Cause of death Pneumonia Resting place Thompson, Connecticut …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”