A prime gap is the difference between two successive prime numbers. The "n"-th prime gap, denoted "g""n", is the difference between the ("n"+1)-th and the "n"-th prime number, i.e.
: "g""n" = "p""n" + 1 − "p""n".
We have "g"1 = 1, "g"2 = "g"3 = 2, and "g"4 = 4. The sequence ("g""n") of prime gaps has been extensively studied. One also writes "g"("p""n") for "g""n".
The first 30 prime gaps are:
: 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14 OEIS|id=A001223
imple observations
For any prime number "P", we write "P"# for "P primorial", that is, the the product of all prime numbers up to and including "P". If "Q" is the prime number following "P", then the sequence
: "P"# + 2, "P"# + 3, ..., "P"# + (Q-1)
is a sequence of "Q"-2 consecutive composite integers, so here there is a prime gap of at least length "Q"-1. Therefore, there exist gaps between primes which are arbitrarily large, i.e. for any prime number "P", there is an integer "n" with "g""n" > "P" (This is seen by choosing "n" so that "p""n" is the greatest prime number less than "P"# + 2).
In reality, prime gaps of "n" numbers can occur at numbers much smaller than "n"#. For instance, the smallest sequence of 71 consecutive composite numbers occurs between 31398 and 31468, whereas 71# has "twenty-seven digits" - its full decimal expansion being 557940830126698960967415390.
Although the average gap between primes increases as the natural logarithm of the integer, the ratio of the maximum prime gap to the integers involved also increases as larger and larger numbers and gaps are encountered.
In the opposite direction, the twin prime conjecture asserts that "g""n" = 2 for infinitely many integers "n".
Numerical results
As of 2007 the largest known prime gap with identified probable prime gap ends has length 2254930, with 86853-digit probable primes found by H. Rosenthal and J. K. Andersen. [http://hjem.get2net.dk/jka/math/primegaps/megagap2.htm] The largest known prime gap with identified proven primes as gap ends has length 337446, with 7996-digit primes found by T. Alm, J. K. Andersen and François Morain. [http://hjem.get2net.dk/jka/math/primegaps/gap337446.htm]
We say that "g""n" is a "maximal gap" if "g""m" < "g""n" for all "m" < "n".
As of April 2007 the largest known maximal gap has length 1442, found by Siegfried Herzog and Tomás Oliveira e Silva. It is the 74th maximal gap, and it occurs after the prime 804212830686677669. [http://hjem.get2net.dk/jka/math/primegaps/maximal.htm]
The largest known value of (digit length of "g""n") / ln("p""n") -- usually called the "merit" of the gap "g""n" -- is 1442 / ln(804212830686677669) = 34.98. [http://hjem.get2net.dk/jka/math/primegaps/gaps20.htm#top20merit]
|
Further results
Upper bounds
Bertrand's postulate states that there is always a prime number between "k" and 2"k", so in particular "p""n"+1 < 2"p""n", which means "g""n" < "p""n".
The prime number theorem says that the "average length" of the gap between a prime "p" and the next prime is ln "p". Of course, the actual length of the gap might be much more or less than this. However, from the prime number theorem one can also easily deduce an upper bound on the length of prime gaps: for every ε > 0, there is a number "N" such that "g""n" < ε"p""n" for all "n" > "N".
Hoheisel was the first to show[G. Hoheisel, "Primzahlprobleme in der Analysis", Sitzunsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 33, pages 3-11, (1930)] that there exists a constant θ < 1 such that]:π("x" + "x"θ) - π("x") ~ "x"θ/log("x"), as "x" tends to infinity,
hence showing that
: