Twin prime conjecture

Twin prime conjecture

The twin prime conjecture is a famous unsolved problem in number theory that involves prime numbers. It states:

:"There are infinitely many primes" "p" "such that" "p" + 2 "is also prime."

Such a pair of prime numbers is called a prime twin. The conjecture has been researched by many number theorists. Mathematicians believe the conjecture to be true, based only on numerical evidence and heuristic reasoning involving the probabilistic distribution of primes using the Cramér model.

In 1849 de Polignac made the more general conjecture that for every natural number "k", there are infinitely many prime pairs "p" and "p"′ such that "p"′ − "p" = 2"k". The case "k" = 1 is the twin prime conjecture.

Partial results

In 1915, Viggo Brun showed that the sum of reciprocals of the twin primes was convergent. This famous result, called Brun's theorem, was the first use of the Brun sieve and helped initiate the development of modern sieve theory. The modern version of Brun's argument can be used to show that the number of twin primes less than "N" does not exceed

:frac{CN}{log^2{N

for some absolute constant "C" > 0.

In 1940, Paul Erdős showed that there is a constant "c" < 1 and infinitely many primes "p" such that ("p"′ − "p") < ("c" ln "p") where "p"′ denotes the next prime after "p". This result was successively improved; in 1986 Helmut Maier showed that a constant "c" < 0.25 can be used. In 2004 Daniel Goldston and Cem Yıldırım showed that the constant could be improved further to "c" = 0.085786… In 2005, Goldston, János Pintz and Yıldırım established that "c" can be chosen to be arbitrarily small [cite web
url = http://www.arxiv.org/abs/math.NT/0505300
title = Small Gaps between Primes Exist (article abstract)
accessdate = 2007-06-20
date = 2007
] [cite web
url = http://www.arxiv.org/abs/math.NT/0506067
title = Small gaps between primes or almost primes (article abstact)
accessdate = 2007-06-20
date = 2007
]

:liminf_{n oinfty}frac{p_{n+1}-p_n}{log p_n}=0.

In fact, by assuming the Elliott–Halberstam conjecture, they were able to show that there are infinitely many "n" such that at least two of "n", "n" + 2, "n" + 6, "n" + 8, "n" + 12, "n" + 18, or "n" + 20 are prime.

In 1966, Chen Jingrun showed that there are infinitely many primes "p" such that "p" + 2 is either a prime or a semiprime (i.e., the product of two primes). The approach he took involved sieve theory, and he managed to treat the twin prime conjecture and Goldbach's conjecture in similar manners (see Chen's theorem).

Defining a Chen prime to be a prime "p" such that "p" + 2 is either a prime or a semiprime, Terence Tao and Ben J. Green showed in 2005 that there are infinitely many three-term arithmetic progressions of Chen primes.

First Hardy–Littlewood conjecture

The Hardy–Littlewood conjecture (after G. H. Hardy and John Littlewood) is a generalization of the twin prime conjecture. It is concerned with the distribution of prime constellations, including twin primes, in analogy to the prime number theorem. Let π2("x") denote the number of primes "p" ≤ "x" such that "p" + 2 is also prime. Define the twin prime constant "C"2 as [cite web
url = http://www.gn-50uma.de/alula/essays/Moree/Moree-details.en.shtml#t05-twin
title = A page of number theoretical constants
accessdate = 2007-06-20
date = 2007
]

:C_2 = prod_{pge 3} frac{p(p-2)}{(p-1)^2} approx 0.66016 18158 46869 57392 78121 10014dots

(here the product extends over all prime numbers "p" ≥ 3). Then the conjecture is that

:pi_2(n) sim 2 C_2 frac{n}{(ln n)^2} sim 2 C_2 int_2^n {dt over (ln t)^2}

in the sense that the quotient of the two expressions tends to 1 as "n" approaches infinity.

This conjecture can be justified (but not proven) by assuming that

:frac{1}{ln{t

describes the density function of the prime distribution, an assumption suggested by the prime number theorem.

ee also

*Arithmetic derivative
*Prime gap

References

External links

* [http://www.pbs.org/wgbh/nova/sciencenow/3302/02.html NOVA Science Now on the Twin Prime Conjecture]
* [http://terrytao.wordpress.com/2007/04/05/simons-lecture-i-structure-and-randomness-in-fourier-analysis-and-number-theory/ Terrence Tao on the difficulty of proving the twin primes conjecture]
*MathWorld|urlname=TwinPrimeConjecture|title=Twin Prime Conjecture
*MathWorld|urlname=TwinPrimesConstant|title=Twin Primes Constant


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Twin prime — A twin prime is a prime number that differs from another prime number by two. Except for the pair (2, 3), this is the smallest possible difference between two primes. Some examples of twin prime pairs are (3, 5), (5, 7), (11, 13), (17, 19), (29,… …   Wikipedia

  • Prime number — Prime redirects here. For other uses, see Prime (disambiguation). A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a prime number is… …   Wikipedia

  • Conjecture Des Nombres Premiers Jumeaux — Nombres premiers jumeaux En mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de deux. Hormis pour la paire (2, 3), cette distance de deux est la plus petite distance possible entre deux nombres premiers …   Wikipédia en Français

  • Conjecture des jumeaux premiers — Nombres premiers jumeaux En mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de deux. Hormis pour la paire (2, 3), cette distance de deux est la plus petite distance possible entre deux nombres premiers …   Wikipédia en Français

  • Conjecture des nombres premiers jumeaux — Nombres premiers jumeaux En mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de deux. Hormis pour la paire (2, 3), cette distance de deux est la plus petite distance possible entre deux nombres premiers …   Wikipédia en Français

  • Prime quadruplet — A prime quadruplet (sometimes called prime quadruple) is four primes of the form { p , p +2, p +6, p +8}. [MathWorld|urlname=PrimeQuadruplet|title=Prime Quadruplet Retrieved on 2007 06 15.] It is the closest four primes above 3 can be together,… …   Wikipedia

  • Prime gap — A prime gap is the difference between two successive prime numbers. The n th prime gap, denoted g n , is the difference between the ( n +1) th and the n th prime number, i.e.: g n = p n + 1 − p n .We have g 1 = 1, g 2 = g 3 = 2, and g 4 = 4. The… …   Wikipedia

  • Prime triplet — In mathematics, a prime triplet is a set of three prime numbers of the form ( p , p +2, p +6) or ( p , p +4, p +6). [Chris Caldwell. [http://primes.utm.edu/glossary/page.php?sort=Triplet The Prime Glossary: triplet] from the Prime Pages.… …   Wikipedia

  • Conjecture De Dubner — Selon Harvey Dubner : Si un p jumeau est un nombre premier ayant un jumeau, alors tout nombre pair supérieur à 4208 est la somme de deux p jumeaux.[1] Cette conjecture a été vérifiée par logiciel pour tous les nombres pairs jusqu à Si cette… …   Wikipédia en Français

  • Conjecture de dubner — Selon Harvey Dubner : Si un p jumeau est un nombre premier ayant un jumeau, alors tout nombre pair supérieur à 4208 est la somme de deux p jumeaux.[1] Cette conjecture a été vérifiée par logiciel pour tous les nombres pairs jusqu à Si cette… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”