Dissipative particle dynamics

Dissipative particle dynamics

Dissipative particle dynamics (DPD) is a stochastic simulation technique for simulating the dynamic and rheological properties of simple and complex fluids. It was initially devised by Hoogerbrugge and Koelman [1][2] to avoid the lattice artifacts of the so-called lattice gas automata and to tackle hydrodynamic time and space scales beyond those available with molecular dynamics (MD). It was subsequently reformulated and slightly modified by Español [3] to ensure the proper thermal equilibrium state.

DPD is an off-lattice mesoscopic simulation technique which involves a set of particles moving in continuous space and discrete time. Particles represent whole molecules or fluid regions, rather than single atoms, and atomistic details are not considered relevant to the processes addressed. The particles’ internal degrees of freedom are integrated out and replaced by simplified pairwise dissipative and random forces, so as to conserve momentum locally and ensure correct hydrodynamic behaviour. The main advantage of this method is that it gives access to longer time and length scales than are possible using conventional MD simulations. Simulations of polymeric fluids in volumes up to 100 nm in linear dimension for tens of microseconds are now common.



The total non-bonded force acting on a DPD particle i is given by a sum over all particles j that lie within a fixed cut-off distance, of three pairwise-additive forces:

 f_i =\sum_{j \ne i}(F^C_{ij} + F^D_{ij} + F^R_{ij})

where the first term in the above equation is a conservative force, the second a dissipative force and the third a random force. The conservative force acts to give beads a chemical identity, while the dissipative and random forces together form a thermostat that keeps the mean temperature of the system constant. A key property of all of the non-bonded forces is that they conserve momentum locally, so that hydrodynamic modes of the fluid emerge even for small particle numbers. Local momentum conservation requires that the random force between two interacting beads be antisymmetric. Each pair of interacting particles therefore requires only a single random force calculation. This distinguishes DPD from Brownian dynamics in which each particle experiences a random force independently of all other particles. Beads can be connected into ‘molecules’ by tying them together with soft (often Hookean) springs. The most common applications of DPD keep the particle number, volume and temperature constant, and so take place in the NVT ensemble. Alternatively, the pressure instead of the volume is held constant, so that the simulation is in the NPT ensemble.


In principle, simulations of very large systems, approaching a cubic micron for milliseconds, are possible using a parallel implementation of DPD running on multiple processors in a Beowulf-style cluster. Because the non-bonded forces are short-ranged in DPD, it is possible to parallelize a DPD code very efficiently using a spatial domain decomposition technique. In this scheme, the total simulation space is divided into a number of cuboidal regions each of which is assigned to a distinct processor in the cluster. Each processor is responsible for integrating the equations of motion of all beads whose centres of mass lie within its region of space. Only beads lying near the boundaries of each processor's space require communication between processors. In order to ensure that the simulation is efficient, the crucial requirement is that the number of particle-particle interactions that require inter-processor communication be much smaller than the number of particle-particle interactions within the bulk of each processor's region of space. Roughly speaking, this means that the volume of space assigned to each processor should be sufficiently large that its surface area (multiplied by a distance comparable to the force cut-off distance) is much less than its volume.


A wide variety of complex hydrodynamic phenomena have been simulated using DPD, the list here is necessarily incomplete. The goal of these simulations often is to relate the macroscopic non-Newtonian flow properties of the fluid to its microscopic structure. Such DPD applications range from modelling the rheological properties of concrete[4] to simulating liposome formation in biophysics[5]. Other recent three-phase phenomena such as dynamic wetting.[6]

Further reading

The full trace of the developments of various important aspects of the DPD methodology since it was first proposed in the early 1990s can be found in "Dissipative Particle Dynamics: Introduction, Methodology and Complex Fluid Applications - A Review"[7]

The state-of-the-art in DPD was captured in a CECAM workshop in 2008.[8] Innovations to the technique presented there include DPD with energy conservation; non-central frictional forces that allow the fluid viscosity to be tuned; an algorithm for preventing bond crossing between polymers; and the automated calibration of DPD interaction parameters from atomistic molecular dynamics.


  1. ^ P. J. Hoogerbrugge and J. M. V. A. Koelman. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19(3):155–160, JUN 1 1992
  2. ^ J. M. V. A. Koelman and P. J. Hoogerbrugge. Dynamic simulations of hard-sphere suspensions under steady shear. Europhysics Letters, 21(3):363–368, JAN 20 1993
  3. ^ P. Español and P. B. Warren. Statistical-mechanics of dissipative particle dynamics. Europhysics Letters, 30(4):191–196, MAY 1 1995
  4. ^ James S. Sims and Nicos S. Martys: Modelling the Rheological Properties of Concrete
  5. ^ Petri Nikunen, Mikko Karttunen, and Ilpo Vattulainen: Modelling Liposome formation in biophysics
  6. ^ B. Henrich, C. Cupelli, M. Moseler, and M. Santer": An adhesive DPD wall model for dynamic wetting, Europhysics Letters 80 (2007) 60004, p.1
  7. ^ Moeendarbary et al. (2009). "Dissipative Particle Dynamics: Introduction, Methodology and Complex Fluid Applications - A Review" (Subscription required). International Journal of Applied Mechanics (World Scientific Journals) 1 (4): 737–763. Bibcode 2009IJAM...01..737M. doi:10.1142/S1758825109000381. http://www.worldscinet.com/ijam/01/0104/S1758825109000381.html. 
  8. ^ Dissipative Particle Dynamics: Addressing deficiencies and establishing new frontiers, CECAM workshop, July 16–18, 2008, Lausanne, Switzerland.

Available packages

Some available simulation packages that can (also) perform DPD simulations are

  • Culgi: A multiscale modeling tool for chemist, Culgi BV.
  • Fluidix: The Fluidix simulation suite available from OneZero Software.
  • Materials Studio: Materials Studio - Modeling and simulation for studying chemicals and materials, Accelrys Software Inc.
  • DL_MESO: Open-source mesoscale simulation software.
  • GPIUTMD: Graphical processors for Many-Particle Dynamics
  • ESPResSo
  • DPDmacs
  • SciDPD in the MAPS suite of Scienomics

External links

Wikimedia Foundation. 2010.

Поможем решить контрольную работу

Look at other dictionaries:

  • Dissipative soliton — Dissipative solitons (DSs) are stable solitary localized structures that arise in nonlinear spatially extended dissipative systems due to mechanisms of self organization. They can be considered as an extension of the classical soliton concept in… …   Wikipedia

  • Meshfree methods — are a particular class of numerical simulation algorithms for the simulation of physical phenomena. Traditional simulation algorithms relied on a grid or a mesh, meshfree methods in contrast use the geometry of the simulated object directly for… …   Wikipedia

  • Non-Newtonian fluid — Continuum mechanics …   Wikipedia

  • DPD — The acronym DPD may stand for: Contents 1 Organizations 2 Companies 3 Medical 4 Miscellaneous Organizations Dallas Police D …   Wikipedia

  • Quantum dissipation — is the branch of physics that studies the quantum analogous of the process of irreversible loss of energy observed at the classical level. Its main purpose is to derive the laws of classical dissipation from the framework of quantum mechanics. It …   Wikipedia

  • Materia granular — Ejemplos de materia granular: esferas de plástico, grava, lentejas y semillas de ajonjolí. La materia granular o materia granulada es aquella que está formada por un conjunto de partículas macroscópicas sólidas lo suficientemente grandes para que …   Wikipedia Español

  • mechanics — /meuh kan iks/, n. 1. (used with a sing. v.) the branch of physics that deals with the action of forces on bodies and with motion, comprised of kinetics, statics, and kinematics. 2. (used with a sing. v.) the theoretical and practical application …   Universalium

  • Non-equilibrium thermodynamics — Thermodynamics …   Wikipedia

  • Chaos theory — This article is about chaos theory in Mathematics. For other uses of Chaos theory, see Chaos Theory (disambiguation). For other uses of Chaos, see Chaos (disambiguation). A plot of the Lorenz attractor for values r = 28, σ = 10, b = 8/3 …   Wikipedia

  • cosmos — /koz meuhs, mohs/, n., pl. cosmos, cosmoses for 2, 4. 1. the world or universe regarded as an orderly, harmonious system. 2. a complete, orderly, harmonious system. 3. order; harmony. 4. any composite plant of the genus Cosmos, of tropical… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”