# Differentially closed field

Differentially closed field

In mathematics, a differential field K is differentially closed if every finite system of differential equations with a solution in some differential field extending K already has a solution in K. This concept was introduced by Robinson (1959). Differentially closed fields are the analogues for differential equations of algebraically closed fields for polynomial equations.

## The theory of differentially closed fields

• p is 0 or a prime number, and is the characteristic of a field.
• A differential polynomial in x is a polynomial in x, ∂x, ∂2x, ...
• The order of a non-zero differential polynomial in x is the largest n such that ∂nx occurs in it, or −1 if the differential polynomial is a constant.
• The separant Sf of a differential polynomial of order n≥0 is the derivative of f with respect to ∂nx.
• The field of constants of a differential field is the subfield of elements a with ∂a=0.
• A field with derivation is called differentially perfect if the field of constants is perfect.
• A differentially closed field is a differentially perfect field K such that if f and g are differential polynomials such that Sf≠ 0 and g≠0 and f has order greater than that of g, then there is some x in the field with f(x)=0 and g(x)≠0. (Some authors add the condition that K has characteristic 0, in which case Sf is automatically non-zero, and K is automatically perfect.)
• DCFp is the theory of differentially closed fields of characteristic p (0 or a prime).

Taking g=1 and f any ordinary separable polynomial shows that any differentially closed field is separably closed. In characteristic 0 this implies that it is algebraically closed, but in characteristic p>0 differentially closed fields are never algebraically closed (or perfect), as the differential must vanish on any pth power.

Unlike the complex numbers in the theory of algebraically closed fields, there is no natural example of a differentially closed field. Any differentially perfect field K has a differential closure, a prime model extension, which is differentially closed. Shelah showed that the differential closure is unique up to isomorphism over K. Shelah also showed that the prime differentially closed field of characteristic 0 (the differential closure of the rationals) is not minimal; this was a rather surprising result, as it is not what one would expect by analogy with algebraically closed fields.

The theory of DCFp is complete and model complete (for p=0 this was shown by Robinson, and for p>0 by Wood (1973)). The theory DCFp is the model companion of the theory of differential fields of characteristic p. It is the model completion of the theory of differentially perfect fields of characteristic p if one adds to the language a symbol giving the pth root of constants when p>0. The theory of differential fields of characteristic p>0 does not have a model completion, and in characteristic p=0 is the same as the theory of differentially perfect fields so has DCF0 as its model completion.

The number of differentially closed fields of some infinite cardinality κ is 2κ; for κ uncountable this was proved by Shelah (1973), and for κ countable by Hrushovski and Sokolovic.

## The Kolchin topology

The Kolchin topology on K m is defined by taking sets of solutions of systems of differential equations over K in m variables as basic closed sets. Like the Zariski topology, the Kolchin topology is Noetherian.

A d-constructible set is a finite union of closed and open sets in the Kolchin topology. Equivalently, a d-constructible set is the set of solutions to a quantifier-free, or atomic, formula with parameters in K.

## Quantifier elimination

Like the theory of algebraically closed fields, the theory DCF0 of differentially closed fields of characteristic 0 eliminates quantifiers. The geometric content of this statement is that the projection of a d-constructible set is d-constructible. It also eliminates imaginaries, is complete, and model complete.

In characteristic p>0, the theory DCFp eliminates quantifiers in the language of differential fields with a unary function r added that is the pth root of all constants, and is 0 on elements that are not constant.

## Differential Nullstellensatz

The differential Nullstellensatz is the analogue in differential algebra of Hilbert's nullstellensatz.

• A differential ideal or ∂-ideal is an ideal closed under ∂.
• An ideal is called radical if it contains all roots of its elements.

Suppose that K is a differentially closed field of characteristic 0. . Then Seidenberg's differential nullstellensatz states there is a bijection between

• Radical differential ideals in the ring of differential polynomials in n variables, and
• ∂-closed subsets of Kn.

This correspondence maps a ∂-closed subset to the ideal of elements vanishing on it, and maps an ideal to its set of zeros.

## Omega stability

In characteristic 0 Blum () showed that the theory of differentially closed fields is ω-stable and has Morley rank ω. In non-zero characteristic Wood (1973) showed that the theory of differentially closed fields is not ω-stable, and Shelah (1973) showed more precisely that it is stable but not superstable.

## References

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• List of first-order theories — In mathematical logic, a first order theory is given by a set of axioms in somelanguage. This entry lists some of the more common examples used in model theory and some of their properties. PreliminariesFor every natural mathematical structure… …   Wikipedia

• Differential algebra — In mathematics, differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with a derivation, which is a unary function that is linear and satisfies the Leibniz product law. A natural example of a… …   Wikipedia

• Stable theory — For differential equations see Stability theory. In model theory, a complete theory is called stable if it does not have too many types. One goal of classification theory is to divide all complete theories into those whose models can be… …   Wikipedia

• List of mathematical logic topics — Clicking on related changes shows a list of most recent edits of articles to which this page links. This page links to itself in order that recent changes to this page will also be included in related changes. This is a list of mathematical logic …   Wikipedia

• List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

• cosmos — /koz meuhs, mohs/, n., pl. cosmos, cosmoses for 2, 4. 1. the world or universe regarded as an orderly, harmonious system. 2. a complete, orderly, harmonious system. 3. order; harmony. 4. any composite plant of the genus Cosmos, of tropical… …   Universalium

• education — /ej oo kay sheuhn/, n. 1. the act or process of imparting or acquiring general knowledge, developing the powers of reasoning and judgment, and generally of preparing oneself or others intellectually for mature life. 2. the act or process of… …   Universalium

• Basil Bernstein — (1 November1924 24 September2000) was a British sociologist and linguist, known for his work in the sociology of education. BiographyHe was born into a Jewish immigrant family, in the East End of London. He was late in coming to an academic… …   Wikipedia

• communication — communicational, adj. /keuh myooh ni kay sheuhn/, n. 1. the act or process of communicating; fact of being communicated. 2. the imparting or interchange of thoughts, opinions, or information by speech, writing, or signs. 3. something imparted,… …   Universalium

• Electric motor — For other kinds of motors, see motor (disambiguation). For a railroad electric engine, see electric locomotive. Various electric motors. A 9 volt PP3 transistor battery is in the center foreground for size comparison. An electric motor converts… …   Wikipedia