Differential Galois theory

Differential Galois theory

In mathematics, differential Galois theory studies the Galois groups of differential equations.

Whereas algebraic Galois theory studies extensions of algebraic fields, differential Galois theory studies extensions of differential fields, i.e. fields that are equipped with a derivation, D. Much of the theory of differential Galois theory is parallel to algebraic Galois theory. One difference between the two constructions is that the Galois groups in differential Galois theory tend to be matrix Lie groups, as compared with the finite groups often encountered in algebraic Galois theory. The problem of finding which integrals of elementary functions can be expressed with other elementary functions is analogous to the problem of solutions of polynomial equations by radicals in algebraic Galois theory, and is solved by Picard–Vessiot theory.

Definitions

For any differential field F, there is a subfield

Con(F) = {f in F | Df = 0},

called the constants of F. Given two differential fields F and G, G is called a logarithmic extension of F if G is a simple transcendental extension of F (i.e. G = F(t) for some transcendental t) such that

Dt = Ds/s for some s in F.

This has the form of a logarithmic derivative. Intuitively, one may think of t as the logarithm of some element s of F, in which case, this condition is analogous to the ordinary chain rule. But it must be remembered that F is not necessarily equipped with a unique logarithm; one might adjoin many "logarithm-like" extensions to F. Similarly, an exponential extension is a simple transcendental extension which satisfies

Dt = tDs.

With the above caveat in mind, this element may be thought of as an exponential of an element s of F. Finally, G is called an elementary differential extension of F if there is a finite chain of subfields from F to G where each extension in the chain is either algebraic, logarithmic, or exponential.

References

See also


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Differential algebra — In mathematics, differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with a derivation, which is a unary function that is linear and satisfies the Leibniz product law. A natural example of a… …   Wikipedia

  • Algebraic differential equation — Note: Differential algebraic equation is something different. In mathematics, an algebraic differential equation is a differential equation that can be expressed by means of differential algebra. There are several such notions, according to the… …   Wikipedia

  • Glossary of field theory — Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject. (See field theory (physics) for the unrelated field theories in physics.) Definition of a field A field is a commutative ring… …   Wikipedia

  • Lie theory — is an area of mathematics, developed initially by Sophus Lie.In Lie s early work, the idea was to construct a theory of continuous groups , to complement the theory of discrete groups that had developed in the theory of modular forms, in the… …   Wikipedia

  • Group theory — is a mathematical discipline, the part of abstract algebra that studies the algebraic structures known as groups. The development of group theory sprang from three main sources: number theory, theory of algebraic equations, and geometry. The… …   Wikipedia

  • Number theory — A Lehmer sieve an analog computer once used for finding primes and solving simple diophantine equations. Number theory is a branch of pure mathematics devoted primarily to the study of the integers. Number theorists study prime numbers (the… …   Wikipedia

  • p-adic Hodge theory — In mathematics, p adic Hodge theory is a theory that provides a way to classify and study p adic Galois representations of characteristic 0 local fields[1] with residual characteristic p (such as Qp). The theory has its beginnings in Jean Pierre… …   Wikipedia

  • Théorie de Galois différentielle — La théorie de Galois différentielle est une branche des mathématiques qui a pour objet l étude des équations différentielles via des méthodes algébriques, plus particulièrement des méthodes issues de la théorie de Galois pour les équations… …   Wikipédia en Français

  • Group (mathematics) — This article covers basic notions. For advanced topics, see Group theory. The possible manipulations of this Rubik s Cube form a group. In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines …   Wikipedia

  • Lie group — Lie groups …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”