Active suspension

Active suspension

Active or adaptive suspension is an automotive technology that controls the vertical movement of the wheels with an onboard system rather than the movement being determined entirely by the road surface. The system virtually eliminates body roll and pitch variation in many driving situations including cornering, accelerating, and braking.

This technology allows car manufacturers to achieve a greater degree of ride quality and car handling by keeping the tires perpendicular to the road in corners, allowing better traction and control.

An onboard computer detects body movement from sensors throughout the vehicle and, using data calculated by opportune control techniques, controls the action of the suspension.



Active suspensions can be generally divided into two main classes: pure active suspensions and semi-active suspensions.


Active suspensions, the first to be introduced, use separate actuators which can exert an independent force on the suspension to improve the riding characteristics. The drawbacks of this design (at least today) are high cost, added complication/mass of the apparatus, and the need for rather frequent maintenance on some implementations. Maintenance can be problematic, since only a factory-authorized dealer will have the tools and mechanics with knowledge of the system, and some problems can be difficult to diagnose.

Michelin's Active Wheel incorporates an in-wheel electrical suspension motor that controls torque distribution, traction, turning maneuvers, pitch, roll and suspension damping for that wheel, in addition to an in-wheel electric traction motor.[1] [2]

Hydraulic actuated

Hydraulically actuated suspensions are controlled with the use of hydraulic servomechanisms. The hydraulic pressure to the servos is supplied by a high pressure radial piston hydraulic pump. Sensors continually monitor body movement and vehicle ride level, constantly supplying the computer with new data.

As the computer receives and processes data, it operates the hydraulic servos, mounted beside each wheel. Almost instantly, the servo-regulated suspension generates counter forces to body lean, dive, and squat during driving maneuvers.

In practice, the system has always incorporated the desirable self-levelling suspension and height adjustable suspension features, with the latter now tied to vehicle speed for improved aerodynamic performance, as the vehicle lowers itself at high speed.

Colin Chapman - the inventor and automotive engineer who founded Lotus Cars and the Lotus Formula One racing team - developed the original concept of computer management of hydraulic suspension in the 1980s to improve cornering in racing cars. Lotus developed a version of its 1985 Excel model with electro-hydraulic active suspension, but this was never offered to the public.

Computer Active Technology Suspension (CATS) co-ordinates the best possible balance between ride quality and handling by analysing road conditions and making up to 3,000 adjustments every second to the suspension settings via electronically controlled dampers.

Electromagnetic recuperative

This type of active suspension uses linear electromagnetic motors attached to each wheel. It provides extremely fast response, and allows regeneration of power consumed by utilizing the motors as generators. This nearly surmounts the issues of slow response times and high power consumption of hydraulic systems. It has only recently come to light as a proof of concept model from the Bose company, the founder of which has been working on exotic suspensions for many years while he worked as an MIT professor. Electronically controlled active suspension system (ECASS) technology was patented by the University of Texas Center for Electromechanics in the 1990s and has been developed by L-3 Electronic Systems for use on military vehicles. The ECASS-equipped HMMWV exceeded the performance specifications for all performance evaluations in terms of absorbed power to the vehicle operator, stability and handling.


Semi-active systems can only change the viscous damping coefficient of the shock absorber, and do not add energy to the suspension system. Though limited in their intervention (for example, the control force can never have different direction than the current vector of velocity of the suspension), semi-active suspensions are less expensive to design and consume far less energy. In recent times, research in semi-active suspensions has continued to advance with respect to their capabilities, narrowing the gap between semi-active and fully active suspension systems.

Solenoid/valve actuated

This type is the most economic and basic type of semi-active suspensions. They consist of a solenoid valve which alters the flow of the hydraulic medium inside the shock absorber, therefore changing the damping characteristics of the suspension setup. The solenoids are wired to the controlling computer, which sends them commands depending on the control algorithm (usually the so called "Sky-Hook" technique). This type of system used in Cadillac's Computer Command Ride (CCR) suspension system.

Magneto rheological damper

Another fairly recent method incorporates magneto rheological dampers with a brand name MagneRide. It was initially developed by Delphi Corporation for GM and was standard, as many other new technologies, for Cadillac Seville STS (from model 2002), and on some other GM models from 2003. This was an upgrade for semi-active systems ("automatic road-sensing suspensions") used in upscale GM vehicles for decades. It allows, together with faster modern computers, changing the stiffness of all wheel suspensions independently. These dampers are finding increased usage in the US and already leases to some foreign brands, mostly in more expensive vehicles. In this system, being in development for 25 years, the damper fluid contains metallic particles. Through the onboard computer, the dampers' compliance characteristics are controlled by an electromagnet. Essentially, increasing the current flow into the damper raises the compression/rebound rates, while a decrease softens the effect of the dampers. Information from wheel sensors (about suspension extension), steering, acceleration sensors and some others is used to calculate the optimized stiffness. The fast reaction of the system allows, for instance, make softer passing by a single wheel over a bump in the road.

Some production vehicles with active and semiactive suspension


  1. ^ Dogget, Scott (1 December 2008). "Michelin to Commercialize Active Wheel; Technology to Appear in 2010 Cars". Green Car Advisor. Retrieved 15 September 2009. 
  2. ^ "MICHELIN ACTIVE WHEEL Press Kit". Michelin. 26 September 2008. Retrieved 15 September 2009. 
  3. ^ "Mitsubishi Galant", Mitsubishi Motors South Africa website
  4. ^ "Mitsubishi Motors history 1981-1990", Mitsubishi Motors South Africa website
  5. ^ "Technology DNA of MMC", .pdf file, Mitsubishi Motors technical review 2005
  6. ^ "MMC's new Galant.", Malay Mail, Byline: Asian Auto, Asia Africa Intelligence Wire, 16-SEP-02 (registration required)
  7. ^ "Mitsubishi Motors Web Museum", Mitsubishi Motors website
  • Nye, Doug. History of the Grand Prix Car: 1966-91. Hazleton Publishing, 1992. ISBN 0-905138-94-5
  • 1986, Electronics Developed for Lotus Active Suspension Technology[1]

External links

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • active suspension — While conventional suspension uses springs and shock absorbers to isolate the vehicle from the bouncing movement of the wheels when it contacts rough roads, active suspension uses power actuators which are controlled by a computer. These… …   Dictionary of automotive terms

  • active suspension — /ˌæktɪv səˈspɛnʃən/ (say .aktiv suh spenshuhn) noun a computerised suspension system for motor vehicles …  

  • Suspension (vehicle) — Suspension is the term given to the system of springs, shock absorbers and linkages that connects a vehicle to its wheels. Suspension systems serve a dual purpose – contributing to the car s handling and braking for good active safety and driving …   Wikipedia

  • Active Body Control — Active Body Control, or ABC, is the Mercedes Benz brand name used to describe fully active suspension, that allows control of the vehicle body motions and therefore virtually eliminates body roll in many driving situations including cornering,… …   Wikipedia

  • semi-active suspension — A suspension whose characteristics can be tuned to driving conditions, such as by hydraulic adjustment of spring supports plus electronic correction of the damping rate …   Dictionary of automotive terms

  • suspension — [1] The assembly of springs, shock absorbers, torsion bars, joints, arms, etc., that cushions the shock of bumps on the road and serves to keep the wheels in constant contact with the road, thereby improving control and traction. [2] A mixture of …   Dictionary of automotive terms

  • Active wheel — Le système Active Wheel mis au point par Michelin, est un ensemble de fonctions intégrées dans la roue et qui comprend en plus de ses fonctions habituelles, le moteur électrique de traction, un moteur et le système de suspension active électrique …   Wikipédia en Français

  • Suspension Bridge (Gladiators) — Infobox Gladiators Event Event Name = Suspension Bridge| |thumb width = 320px c Int. Year = 1993 origin country= flag|United Kingdom Used In = flag|United Kingdom flag|Australia flag|Sweden Flag|South Africa Last Used = present num cont = 1 num… …   Wikipedia

  • Suspension bridge — This article is concerned with a particular type of suspension bridge, the suspended deck type.:For an index to the several types see suspension bridge types.:For the Gladiators event, see Suspension Bridge (Gladiators). A suspension bridge is a… …   Wikipedia

  • Suspension pneumatique — Le Lincoln Town Car est l une des voitures de production qui utilisent un système de suspension pneumatique. La suspension pneumatique est un type de véhicule avec une suspension alimenté par une pompe à air entraînée par un moteur électrique ou… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”