- Tetrapod
Taxobox
name = Tetrapods
fossil_range = LateDevonian to Recent
image_width = 200px
image_caption = A Fire Salamander.
regnum =Animal ia
phylum =Chordata
subphylum =Vertebrata
superclassis = Tetrapoda
superclassis_authority = Broili, 1913
subdivision_ranks =Clades
subdivision =Amphibia Amniota Tetrapods (Greek τετραποδη "tetrapoda",
Latin "quadruped ", "four-footed") arevertebrate animal s having four feet,leg s or leglikeappendage s.Amphibian s,reptile s,dinosaur s/bird s, andmammal s are all tetrapods, and even the limblesssnake s are tetrapods by descent. The earliest tetrapods radiated from theSarcopterygii , or lobe-finnedfish , into air-breathing amphibians in theDevonian period.Evolution
" — exhibited a sequence of adaptations:
•"Panderichthys ", suited to muddy shallows;
•"Tiktaalik " with limb-like fins that could take it onto land;
•Early tetrapods in weed-filled swamps, such as;
•"Acanthostega ", which had feet with eight digits,
•"Ichthyostega " with limbs.
Descendants also included pelagic lobe-finned fish such ascoelacanth species.]Devonian tetrapods
Research by
Jennifer A. Clack and her colleagues showed that the earliest tetrapods, such as "Acanthostega ", were wholly aquatic and quite unsuited to life on land. This overturned the earlier view that fish had first invaded the land — either in search of prey (like modernmudskipper s) or to find water when the pond they lived in dried out — and later evolved legs, lungs, etc.The first tetrapods are now thought to have evolved in shallow and
swamp y freshwater habitats, towards the end of the Devonian, a little more than 365 million years ago. By the late Devonian, landplant s had stabilized freshwater habitats, allowing the firstwetland ecosystem s to develop, with increasingly complex food webs that afforded new opportunities. [http://news.softpedia.com/news/How-did-fish-grow-legs-15424.shtml] Freshwater habitats were not the only places to find water filled with organic matter and choked with plants with dense vegetation near the water's edge. Swampy habitats like shallow wetlands, coastal lagoons and large brackish river deltas also existed at this time, and there is much to suggest that this is the kind of environment in which the tetrapods evolved. Early fossil tetrapods have been found in marine sediments, and because fossils of primitive tetrapods in general are found scattered all around the world, they must have spread by following the coastal lines — they could not have lived in freshwater only.The common ancestor of all present gnathostomes lived in freshwater, and later migrated back to the sea. To deal with the much higher salinity in sea water, they evolved the ability to turn the
nitrogen waste productammonia into harmlessurea , storing it in the body to make the blood as salty as the sea water without poisoning the organism.Ray-finned fishes later returned to freshwater and lost this ability. Since their blood contained more salt than freshwater, they could simply get rid of ammonia through their gills. When they finally returned to the sea again, they could not recover their old trick of turning ammonia to urea, and they had to evolve salt excreting glands instead.Lungfish es do the same when they are living in water, making ammonia and no urea, but when the water dries up and they are forced to burrow down in the mud, they switch to urea production. Like cartilaginous fishes, thecoelacanth can store urea in its blood, as can the only known amphibians that can live for long periods of time in salt water (thetoad "Bufo marinus" and thefrog "Rana cancrivora"). These are traits they have inherited from their ancestors.If early tetrapods lived in freshwater, and if they lost the ability to produce urea and used ammonia only, they would have to evolve it from scratch again later. Not a single species of all the ray-finned fishes living today has been able to do that, so it is not likely the tetrapods would have done so either.
Terrestrial animal s that can only produce ammonia would have to drink constantly, making a life on land impossible (a few exceptions exist, as some terrestrialwoodlice can excrete their nitrogenous waste as ammonia gas). This probably also was a problem at the start when the tetrapods started to spend time out of water, but eventually the urea system would dominate completely. Because of this it is not likely they emerged in freshwater (unless they first migrated into freshwater habitats and then migrated onto land so shortly after that they still hadn't forgot how to make urea), even if some who never went to land (or extinct primitive species that returned to water) of course could have adapted to freshwater lakes and rivers.Primitive tetrapods developed from a lobe-finned fish (an "osteolepid sarcopterygian"), with a two-lobed
brain in a flattenedskull , a wide mouth and a short snout, whose upward-facing eyes show that it was a bottom-dweller, and which had already developed adaptations of fins with fleshy bases andbone s (the "living fossil " coelacanth is a related marine lobe-finned fish without these shallow-water adaptations).Even more closely related was "
Panderichthys ", which even had achoana .These fishes used their fins aspaddle s in shallow-water habitats choked with plants anddetritus . Their fins could also have been used to attach themselves to plants or similar while they were laying in ambush for prey. The universal tetrapod characteristics of front limbs that bend backward at the elbow and hind limbs that bend forward at theknee can plausibly be traced to early tetrapods living in shallow water.It is now clear that the common ancestor of the bony fishes had a primitive air-breathing
lung (later evolved into a swim bladder in most ray-finned fishes). This suggests that it evolved in warm shallow waters, the kind of habitat the lobe finned fishes were living and made use of their simple lung when the oxygen level in the water became too low.The lungfishes are now considered as being the closest living relatives of the tetrapods, even closer than the coelacanth.
Fleshy lobe fins supported on bones rather than ray-stiffened fins seems to have been an original trait of the bony fishes (
Osteichthyes ). The lobe-finned ancestors of the tetrapods evolved them further, while the ancestors of the ray-finned (Actinopterygii ) fishes evolved their fins in the opposite direction. The most primitive group of the ray-fins, thebichir s, still have fleshy frontal fins.Nine genera of Devonian tetrapods have been described, several known mainly or entirely from lower
jaw material. All of them were from the European-North Americansupercontinent , which comprisedEurope ,North America andGreenland . The only exception is a singleGondwana n genus, "Metaxygnathus ", which has been found inAustralia .The first Devonian tetrapod identified from
Asia was recognized from afossil jawbone reported in 2002. The Chinese tetrapod "Sinostega pani" was discovered among fossilized tropical plants and lobe-finned fish in the redsandstone sediments of the Ningxia Hui Autonomous Region of northwest China. This finding substantially extended the geographical range of these animals and has raised new questions about the worldwide distribution and great taxonomic diversity they achieved within a relatively short time.These earliest tetrapods were not terrestrial. The earliest confirmed terrestrial forms are known from the early
Carboniferous deposits, some 20 million years later. Still, they may have spent very brief periods out of water and would have used their legs to paw their way through themud .Why they went to land in the first place is still debated. One reason could be that the small juveniles who had completed their metamorphosis had what it took to make use of what land had to offer. Already adapted to breathe air and move around in shallow waters near land as a protection (just as modern fish (and amphibians) often spent the first part of their life in the comparative safety of shallow waters like
mangrove forests), two very different niches partially overlapped each other, with the young juveniles in the diffuse line between. One of them was overcrowded and dangerous while the other was much safer and much less crowded, offering less competition over resources. The terrestrial niche was also a much more challenging place for primary aquatic animals, but because of the way evolution and the selection pressure works, those juveniles who could take advantage of this would be rewarded. Once they gained a small foothold on land, evolution took care of the rest, thanks to all their preadaptations and being at the right place at the right time.At this time there were a lot of invertebrates crawling around on land and near water, in moist soil and wet litter, more than big enough to give the small ones a good meal. Some were even big enough to eat small tetrapods, but land would still be a much safer place and offer more than the waters if they knew how to make use of it.
Adults would be too heavy and slow and demand bigger prey. Small juveniles were much lighter, faster and was satisfied with relatively small invertebrates. Modern
mudskipper s are said to be able to snap insects in flight while on land, so maybe we shouldn't underestimate the early juvenile tetrapods either.Initially making only tentative forays onto land, as the generations went by they adapted to terrestrial environments and spent longer periods away from the water, also spending a longer part of their childhood on land before returning to the water for the rest of their life. It is possible also the adults started to spend some time on land as the skeletal modifications in early tetrapods as
Ichthyostega suggests, but only to bask in the sun close to the water's edge, not to hunt or move around. It is a fact that the first true tetrapods adapted to terrestrial locomotion were small. Only later did they increase in size.The fully grown obviously kept most of the anatomical and other forms of adaptations from their juvenile stage, giving them modified limbs and other traits of terrestrial properties. To be successful adults they first had to be successful juveniles. The adults of some of the smaller species were in that case probably able to move on land too when sufficiently evolved.
If some sort of
neoteny or dwarfism occurred, making the animals sexually mature and fully grown while still living on land, they would only need to visit water to drink and reproduce.
* [http://www.palaeos.com/Vertebrates/Units/140Sarcopterygii/140.800.html#Osteolepiformes Cladistic analysis of osteolepiform Sarcopterygians]Carboniferous tetrapods
Until the 1990s, there was a 30 million year gap in the fossil record between the late Devonian tetrapods and the reappearance of tetrapod fossils in recognizable mid-
Carboniferous amphibian lineages. It was referred to as "Romer's Gap", after the palaeontologist who recognized it.During the "gap", tetrapod backbones developed, as did limbs with digits and other adaptations for terrestrial life.
Ear s,skull s andvertebra l columns all underwent changes too. The number of digits onhand s and feet became standardized at five, as lineages with more digits died out. The very few tetrapod fossils found in the "gap" are all the more precious.The transition from an aquatic lobe-finned fish to an air-breathing amphibian was a momentous occasion in the evolutionary history of the
vertebrate s. For an animal to live in agravity -neutral, aqueous environment and then invade one that is entirely different required major changes to the overall body plan, both in form and in function. "Eryops " is an example of an animal that made such adaptations. It retained and refined most of the traits found in its fish ancestors. Sturdy limbs supported and transported its body while out of water. A thicker, strongerbackbone prevented its body from sagging under its own weight. Also, by utilizing vestigial fish jaw bones, a rudimentary ear was developed, allowing "Eryops" to hear airbornesound .By the
Visean age of mid-Carboniferous times the early tetrapods had radiated into at least three main branches. Recognizable basal-group tetrapods are representative of the temnospondyls (e.g. "Eryops ") and similarly primitive anthracosaurs, which were the relatives and ancestors of the Amniota. Depending on whichever authorities one follows, modern amphibians (frogs,salamander s andcaecilian s) are derived from one or the other (or possibly both, although this is now a minority position) of these two groups. The first amniotes are known from the early part of the Late Carboniferous, and during theTriassic counted among their number the earliestmammal s,turtle s, andcrocodile s (lizard s andbird s appeared in theJurassic , andsnake s in theCretaceous ). As living members of the tetrapod clan — that is of the tetrapod "crown-group" — these varied tetrapods represent the phylogenetic end-points of these two divergent lineages. A third, more primitive,Carboniferous group, the baphetids, left no modern survivors. Finally, theLepospondyli are an extinct Palaeozoic group of uncertain relationships.Permian tetrapods
In the
Permian period, as the separate tetrapod lineages each developed in their own way, the term "tetrapoda" becomes less useful. In addition to temnospondyl and anthracosaur clades among the early "amphibia" (labyrinthodonts), there were two important divergent clades of amniotes, theSauropsida and theSynapsida , of which the latter were the most important and successful Permian animals. Each of these lineages, however, remains grouped with the tetrapoda, just as "Homo sapiens" could be considered a very highly-specialized kind of "lobe-finned fish".Living tetrapods
There are three main categories of living ("
crown group ") tetrapods, all of which also include manyextinct groups:;Amphibia :
frog s andtoad s, newts and salamanders, andcaecilian s;Sauropsida :bird s and modernreptile s;Synapsida :mammal sNote that
snake s and other legless reptiles are considered tetrapods because they are descended from ancestors who had a full complement of limbs. Similar considerations apply tocaecilians and aquatic mammals.Classification
All early tetrapods and tetrapodomorphs that were not true amphibians or amniotes were once placed together in the
paraphyletic groupLabyrinthodontia . Labyrinthodonts were distinguished mainly by their complex dentine infoldingtooth structure, a feature shared with crossopterygian fish. The labyrinthodonts were divided into theIchthyostegalia (another paraphyletic assemblage of primitive tetrapods and kin, such as "Ichthyostega "), theTemnospondyli (possibly members ofAmphibia ), and theAnthracosauria (close relatives ofamniote s). The main difference between the three groups was based on their respective vertebral structures. The Anthracosauria had small pleurocentra, which grew and fused, becoming the truecentrum in later vertebrates. In contrast, the Temnospondyli had a conservative vertebral column in which the pleurocentra remained small in primitive forms, vanishing entirely in the more advanced ones. The intercentra are large and form a complete ring.Although the temnospondyls flourished in many forms in the Late
Paleozoic andTriassic , they were an entirely self-contained group and did not give rise to any later tetrapod groups. It was the sister groupAnthracosauria that gave rise to the reptiles.Tetrapod groups
A partial taxonomy of the tetrapods:
* Phylum
Chordata
*** ClassSarcopterygii
**** SubclassTetrapodomorpha
***** "Eusthenopteron "
***** "Panderichthys "
***** "Tiktaalik "
***** "Ventastega "
** Superclass Tetrapoda
***** FamilyElginerpeton tidae
***** Family Acanthostegidae
***** Family Ichthyostegidae
***** "Hynerpeton "
***** FamilyWhatcheeriidae
***** Family Crassigyrinidae
***** FamilyLoxommatidae
***** FamilyColosteidae
*****Batrachomorpha
*** Class Amphibia — Amphibians
**** SubclassLepospondyli
**** SubclassTemnospondyli
**** SubclassLissamphibia — frogs, salamanders
**** SuperorderReptiliomorpha
**** Amniota
*** ClassSauropsida —Reptile s
*** Class Aves — Birds
*** ClassSynapsida — Mammal-like reptiles
*** ClassMammalia — MammalsAnatomical features of early tetrapods
The tetrapod's ancestral fish must have possessed similar traits to those inherited by the early tetrapods, including internal nostrils (to separate the breathing and feeding passages) and a large fleshy
fin built on bones that could give rise to the tetrapod limb. The rhipidistiancrossopterygian s fulfill every requirement for this ancestry. Their palatal and jaw structures were identical to those of early tetrapods, and theirdentition was identical too, with labyrinthine teeth fitting in a pit-and-tooth arrangement on the palate. The crossopterygian paired fins were smaller than tetrapod limbs, but the skeletal structure was very similar in that the crossopterygian had a single proximal bone (analogous to thehumerus orfemur ), two bones in the next segment (forearm or lower leg), and an irregular subdivision of the fin, roughly comparable to the structure of thecarpus / tarsus and phalanges of a hand.The major difference between crossopterygians and early tetrapods was in relative development of front and back
skull portions; the snout is much less developed than in most early tetrapods and the post-orbital skull is exceptionally longer than an amphibian's.A great many kinds of early tetrapods lived during the
Carboniferous period. Therefore, their ancestor would have lived earlier, during theDevonian period. DevonianIchthyostegids were the earliest of true tetrapods, with a skeleton that is directly comparable to that of rhipidistian ancestors. Earlytemnospondyl s (Late Devonian to EarlyMississippian ) still had some ichthyostegid features such as similar skull bone patterns, labyrinthine tooth structure, the fish skull-hinge, pieces ofgill structure between the cheek and shoulder, and thevertebral column . They had, however, lost several other fish features such as the fin rays in thetail .In order to propagate in the terrestrial environment, certain challenges had to be overcome. The animal's body needed additional support, because
buoyancy was no longer a factor. A new method of respiration was required in order to extract atmosphericoxygen , instead of oxygen dissolved in water. A means oflocomotion would need to be developed to traverse distances between waterholes. Water retention was now important since it was no longer the living matrix, and it could be lost easily to the environment. Finally, new sensory input systems were required if the animal was to have any ability to function reasonably while on land.kull
The most notable characteristics that make a tetrapod skull different from a fish's are the relative frontal and rear portion lengths. The fish had a long rear portion while the front was short; the orbital vacuities were thus located towards the anterior end. In the tetrapod, the front of the skull lengthened, positioning the orbits farther back on the skull. The
lacrimal bone was not in contact with the frontal anymore, having been separated from it by the prefrontal bone. Also of importance is that the skull was now free to rotate from side to side, independent of the spine, on the newly forming neck.A diagnostic character of temnospondyls is that the
tabular bones (which formed the posterior corners of the skull-table) were separated from the respective left and right parietals by asutural junction between thepostparietals andsupratemporals . Also at the rear of the skull, all bones dorsal to thecleithrum were lost.The lower jaw of, for example, "
Eryops " resembled its crossopterygian ancestors in that on the outer surface lay a longdentary that bore teeth. There were also bones below the dentary on the jaw: twosplenial s, theangulary and thesurangular . On the inside were usually threecoronoid s that bore teeth and lay close to the dentary. On the upper jaw was a row of marginal labyrinthine teeth, located on themaxilla andpremaxilla . In "Eryops", as in all early amphibians, the teeth were replaced in waves that traveled from the front of the jaw to the back in such a way that every other tooth was mature, and the ones in between were young.Dentition
The "labyrinthodonts" had a peculiar tooth structure from which their name was derived and, although not exclusive to the group, the labyrinthine dentition is a useful indicator as to proper classification. The important feature of the tooth is that the enamel and
dentine were folded in such a way as to form a complicated corrugated pattern when viewed in cross section. This infolding resulted in strengthening of the tooth and increased wear resistance. Such teeth survived for 100 Ma, first among crossopterygian fish, then stem reptiles. Modern amphibians no longer have this type of dentition but ratherpleurodont teeth, in fewer numbers of the whole group.ensory organs
There is a
density difference between air and water that causes smells (certain chemical compounds detectable bychemoreceptor s) to behave differently. An animal first venturing out onto land would have difficulty in locating such chemical signals if its sensoryapparatus was designed for aquatic detection.Fish have a
lateral line system that detectspressure fluctuations in the water. Such pressure is non-detectable in air, but grooves for the lateral line sense organs were found on the skull of labyrinthodonts, suggesting a partially aquatic habitat. Modern amphibians, which are semi-aquatic, exhibit this feature whereas it has been retired by the higher vertebrates. The olfactoryepithelium would also have to be modified in order to detect airborneodor s.In addition to the lateral line organ system, the eye had to change as well. This change came about because the
refractive index of light differs between air and water, so thefocal length of the lens was altered in order to properly function. The eye was now exposed to a relatively dry environment rather than being bathed by water, soeyelid s developed andtear duct s evolved to produce a liquid, moistening the eyeball.Hearing
The balancing function of the middle ear was retained from the fish ancestry, but delicate air vibrations could not set up
pulsation s through the skull in order for it to function a proper auditory organ. Typical of most labyrinthodonts, thespiracular gill pouch was retained as theotic notch , closed in by the tympanum, a thin, tight membrane.The
hyomandibula of fish migrated upwards from its jaw supporting position, and was reduced in size to form thestapes . Situated between the tympanum and braincase in an air-filled cavity, the stapes was now capable of transmitting vibrations from the exterior of the head to the interior. Thus the stapes became an important element in an impedance matching system, coupling airborne sound waves to the receptor system of the inner ear. This system had evolved independently within several different amphibian lineages.In order for the impedance matching ear to work, certain conditions had to be met. The stapes must have been perpendicular to the tympanum, small and light enough to reduce its
inertia and suspended in an air-filled cavity. In modern species that are sensitive to over 1 kHz frequencies, the footplate of the stapes is 1/20th the area of the tympanum. However, in early amphibians the stapes was too large, making the footplate area oversized, preventing the hearing of high frequencies. So it appears that only high intensity, low frequency sounds could be detected, with the stapes more probably being used to support the braincase against the cheek.[http://news.softpedia.com/news/Did-our-ancestors-breathe-through-their-ears-16611.shtml "Did Our Ancestors Breathe through Their Ears?"]
Girdles
The
pectoral girdle of early tetrapods such as "Eryops" was highly developed, with a larger size for both increasedmuscle attachment to it and to the limbs. Most notably, the shoulder girdle was disconnected from the skull, resulting in improved terrestrial locomotion. The crossopterygian "cleithrum" was retained as theclavicle , and the interclavicle was well-developed, lying on the underside of the chest. In primitive forms, the two clavicles and the interclavical could have grown ventrally in such a way as to form a broad chest plate, although such was not the case in "Eryops". The upper portion of the girdle had a flat,scapular blade , with theglenoid cavity situated below performing as thearticulation surface for the humerus, while ventrally there was a large, flat coracoid plate turning in toward the midline.The pelvic girdle also was much larger than the simple plate found in fishes, accommodating more muscles. It extended far dorsally and was joined to the backbone by one or more specialized sacral
rib s. The hind legs were somewhat specialized in that they not only supported weight, but also provided propulsion. The dorsal extension of the pelvis was the ilium, while the broad ventral plate was comprised of the pubis in front and theischium in behind. The three bones met at a single point in the center of the pelvic triangle called the "acetabulum", providing a surface of articulation for the femur.The main strength of the ilio-sacral attachment of "Eryops" was by
ligament s, a condition structurally, but notphylogenetically , intermediate between that of the most primitive embolomerous amphibians and early reptiles. The condition that is more usually found in higher vertebrates is thatcartilage and fusion of the sacral ribs to the blade of the ilium are utilized in addition to ligamentous attachments.Limbs
The humerus was the largest bone of the arm, its head articulating with the glenoid cavity of the pectoral girdle, distally with the radius and
ulna . The radius resided on the inner side of the forearm and rested directly under the humerus, supporting much of the weight, while the ulna was located to the outside of the humerus. The ulna had a head, which muscles pulled on to extend the limb, called theolecranon that extended above the edge of the humerus.The radius and the ulna articulated with the
carpus , which was aproximal row of three elements: theradiale underlying the radius, theulnare underneath the ulna and an intermedium between the two. A large central element was beneath the last and may have articulated with the radius. There were also three smaller centralia lying to the radial side. Opposite the head of eachtoe lay a series of fivedistal carpal s. Eachdigit had a first segment, themetacarpal , lying in the palm region.The pelvic limb bones were essentially the same as in the pectoral limb, but with different names. The analogue to the humerus was the femur, which was longer and slimmer. The two lower arm bones corresponded to the
tibia andfibula of the hind leg, the former being the innermost and the latter the outermost bones. The tarsus is the hind version of the carpus and its bones correspond as well.Feeding
Early tetrapods had a wide gaping jaw with weak muscles to open and close it. In the jaw were fang-like palatal teeth that, when coupled with the gape, suggests an inertial feeding habit. This is when the amphibian would grasp the
prey and, lacking any chewing mechanism, toss the head up and backwards, throwing the prey farther back into the mouth. Such feeding is seen today in the crocodile andalligator .The
tongue of modern adult amphibians is quite fleshy and attached to the front of the lower jaw, so it is reasonable to speculate that it was fastened in a similar fashion in primitive forms, although it was probably not specialized like it is in a frog.It is taken that early tetrapods were not very active, thus a
predator ylifestyle was probably not the norm. It is more likely that it fed on fish either in the water or on those that became stranded at the margins oflake s and swamps. Also abundant at the time was a large supply of terrestrialinvertebrates , which may have provided a fairly adequate food supply.Respiration
Modern amphibians breathe by inhaling air into
lungs , where oxygen is absorbed. They also breathe through the moist lining of the mouth andskin . "Eryops" also inhaled, but its ribs were too closely spaced to suggest that it did this by expanding therib cage . More likely, it opened its mouth and nostrils, depressed thehyoid apparatus to expand the oral cavity, closed its mouth and nostrils finally and elevated the floor of the mouth to force air back into the lungs — in other words, it gulped then swallowed. It probably exhaled by contraction of the elastic tissue in the lung walls. Other special respiratory methods probably existed.Circulation
Early tetrapods most likely had a three-chambered
heart , as do modern amphibians and reptiles, in which oxygenated blood from the lungs and de-oxygenated blood from the respiring tissues enters by separate atria, and is directed via a spiral valve to the appropriate vessel — aorta for oxygenated blood and pulmonary vein for deoxygenated blood. The spiral valve is essential to keeping the mixing of the two types of blood to a minimum, enabling the animal to have higher metabolic rates, and be more active than otherwise.Locomotion
In typical early tetrapod posture the upper arm and upper leg extended nearly straight horizontal from its body, and the forearm and the lower leg extended downward from the upper segment at a near
right angle . The body weight was not centered over the limbs, but was rather transferred 90 degrees outward and down through the lower limbs, which touched the ground. Most of the animal's strength was used to just lift its body off the ground for walking, which was probably slow and difficult. With this sort of posture, it could only make short broad strides. This has been confirmed by fossilized footprints found in Carboniferous rocks.Ligamentous attachments within the limbs were present in "Eryops", being important because they were the precursor to bony and cartilaginous variations seen in modern terrestrial animals that use their limbs for locomotion.
Of all body parts, the spine was the most affected by the move from water to land. It now had to resist the bending caused by body weight and had to provide mobility where needed. Previously, it could bend along its entire length. Likewise, the paired appendages had not been formerly connected to the spine, but the slowly strengthening limbs now transmitted their support to the axis of the body.
References
See also
*
Geologic timescale
*Jennifer A. Clack , a paleontologist specializing in early tetrapods.
*Prehistoric life
*Body form External links
* [http://www.palaeos.com/Vertebrates/Units/150Tetrapoda/150.000.html#Whatsa"Tetrapod"? What is a tetrapod?]
* [http://www.ucmp.berkeley.edu/vertebrates/tetrapods/tetraintro.html UCMP Taxonomy page]
* [http://www.palaeos.com/Vertebrates/Units/150Tetrapoda/150.000.html Tetrapod cladograms] — similar to genealogicalfamily tree s
* [http://news.softpedia.com/news/How-did-fish-grow-legs-15424.shtml How did fish grow legs?]
* [http://go.reuters.com/newsArticle.jhtml?type=scienceNews&storyID=11761794&src=rss/scienceNews New fossils fill gap between water and land animals]
* [http://www.livescience.com/animalworld/060119_breathing_ears.html Human Ears Evolved from Ancient Fish Gills]
* [http://www.sciam.com/print_version.cfm?articleID=000DC8B8-EA15-137C-AA1583414B7F0000 Scientific American: Getting a Leg Up on Land]Devonian tetrapods
* [http://news.nationalgeographic.com/news/2002/12/1218_021218_tetrapod.html "Sinostegia" discovery reported in "National Geographic"]
* [http://www.devoniantimes.org/index.html "Devonian Times"]
* [http://www.devoniantimes.org/Order/trackways.html "Devonian Times" — Tetrapod] Trackways
* [http://uwnews.org/article.asp?articleID=42393 Scientists find 245 million-year-old burrows of land vertebrates in Antarctica]Carboniferous tetrapods
* [http://www.origins.tv/darwin/tetrapods.htm Detailed account of early tetrapod evolution] — This website, geared to the layman, also describes Jennifer Clack's role in untangling the early evolution of tetrapods.
* [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12097908&dopt=Abstract Abstract of Jennifer A. Clack, "An early tetrapod from 'Romer's Gap'"] in "Nature", July 2002
* [http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v394/n6688/abs/394066a0_r.html Abstract of Jennifer Clack's identification of a primitive baphetid tetrapod]
* [http://www.origins.tv/darwin/tetrapods.htm "The evolution of tetrapods and the closing of Romer's Gap."]
Wikimedia Foundation. 2010.