Midsphere

Midsphere
A polyhedron and its midsphere. The red circles are the boundaries of spherical caps within which the surface of the sphere can be seen from each vertex.

In geometry, the midsphere or intersphere of a polyhedron is a sphere which is tangent to every edge of the polyhedron. That is to say, it touches any given edge at exactly one point. Not every polyhedron has a midsphere, but for every polyhedron there is a combinatorially equivalent polyhedron, the canonical polyhedron, that does have a midsphere.

The midsphere is so-called because it is between the inscribed sphere (which is tangent to every face of a polyhedron) and the circumscribed sphere (which touches every vertex). The radius of this sphere is called the midradius.

Contents

Examples

The uniform polyhedra, including the regular, quasiregular and semiregular polyhedra and their duals all have midspheres. In the regular polyhedra, the inscribed sphere, midsphere, and circumscribed sphere all exist and are concentric.[1]

Tangent circles

If O is the midsphere of a polyhedron P, then the intersection of O with any face of P is a circle. The circles formed in this way on all of the faces of P form a system of circles on O that are tangent exactly when the faces they lie in share an edge.

Dually, if v is a vertex of P, then there is a cone that has its apex at v and that is tangent to O in a circle; this circle forms the boundary of a spherical cap within which the sphere's surface is visible from the vertex. That is, the circle is the horizon of the midsphere, as viewed from the vertex. The circles formed in this way are tangent to each other exactly when the vertices they correspond to are connected by an edge.

Duality

If a polyhedron P has a midsphere O, then the polar polyhedron with respect to O also has O as its midsphere. The face planes of the polar polyhedron pass through the circles on O that are tangent to cones having the vertices of P as their apexes.[2]

Canonical polyhedron

One version of the circle packing theorem, on representing planar graphs by systems of tangent circles, states that every polyhedral graph can be represented by a polyhedron with a midsphere. The horizon circles of a canonical polyhedron can be transformed, by stereographic projection, into a collection of circles in the Euclidean plane that do not cross each other and are tangent to each other exactly when the vertices they correspond to are adjacent.[3] In contrast, there exist polyhedra that do not have an equivalent form with an inscribed sphere or circumscribed sphere.[4]

Any two polyhedra with the same face lattice and the same midsphere can be transformed into each other by a projective transformation of three-dimensional space that leaves the midsphere in the same position. The restriction of this projective transformation to the midsphere is a Möbius transformation.[5] There is a unique way of performing this transformation so that the midsphere is the unit sphere and so that the centroid of the points of tangency is at the center of the sphere; this gives a representation of the given polyhedron that is unique up to congruence, the canonical polyhedron.[6] Alternatively, a transformed polyhedron that maximizes the minimum distance of a vertex from the midsphere can be found in linear time; the canonical polyhedron chosen in this way has maximal symmetry among all choices of the canonical polyhedron.[7]

Notes

  1. ^ Coxeter (1973) states this for regular polyhedra; Cundy & Rollett 1961 for archimedean polyhedra.
  2. ^ Coxeter (1973).
  3. ^ Schramm (1992); Sachs (1994). Schramm states that the existence of an equivalent polyhedron with a midsphere was claimed by Koebe (1936), but that Koebe only proved this result for polyhedra with triangular faces. Schramm credits the full result to William Thurston, but the relevant portion of Thurston's lecture notes [1] again only states the result explicitly for triangulated polyhedra.
  4. ^ Schramm (1992); Steinitz (1928).
  5. ^ Sachs (1994).
  6. ^ Ziegler (1995).
  7. ^ Bern & Eppstein (2001).

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Circle packing theorem — Example of the circle packing theorem on K5, the complete graph on five vertices, minus one edge. The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane …   Wikipedia

  • Dual polyhedron — The dual of a cube is an octahedron, shown here with vertices at the cube face centers …   Wikipedia

  • Platonic solid — In geometry, a Platonic solid is a convex polyhedron that is regular, in the sense of a regular polygon. Specifically, the faces of a Platonic solid are congruent regular polygons, with the same number of faces meeting at each vertex; thus, all… …   Wikipedia

  • Polyhedral compound — A polyhedral compound is a polyhedron that is itself composed of several other polyhedra sharing a common centre. They are the three dimensional analogs of polygonal compounds such as the hexagram. Neighbouring vertices of a compound can be… …   Wikipedia

  • Tetrahedron — For the academic journal, see Tetrahedron (journal). Regular Tetrahedron (Click here for rotating model) Type Platonic solid Elements F = 4, E = 6 V = 4 (χ = 2) Faces by s …   Wikipedia

  • Regular polyhedron — A regular polyhedron is a polyhedron whose faces are congruent (all alike) regular polygons which are assembled in the same way around each vertex. A regular polyhedron is highly symmetrical, being all of edge transitive, vertex transitive and… …   Wikipedia

  • Circumscribed sphere — In geometry, a circumscribed sphere of a polyhedron is a sphere that contains the polyhedron and touches each of the polyhedron s vertices. The word circumsphere is sometimes used to mean the same thing. When it exists, a circumscribed sphere… …   Wikipedia

  • Inscribed sphere — In geometry, the inscribed sphere or insphere of a convex polyhedron is a sphere that is contained within the polyhedron and tangent to each of the polyhedron s faces. It is the largest sphere that is contained wholly within the polyhedron, and… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Solide de Platon — En géométrie euclidienne, un solide de Platon est un polyèdre régulier et convexe. Entre les polygones réguliers et convexes de la géométrie plane, et les polyèdres réguliers convexes de l’espace à trois dimensions, il y a une analogie, mais… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”