Digital waveguide synthesis

Digital waveguide synthesis

Digital waveguide synthesis is the synthesis of audio using a digital waveguide. Digital waveguides are efficient computational models for physical media through which acoustic waves propagate. For this reason, digital waveguides constitute a major part of most modern physical modeling synthesizers.

A lossless digital waveguide realizes the discrete form of d'Alembert's solution of the one-dimensional wave equation as the superposition of a right-going wave and a left-going wave,

y(m,n) = y + (mn) + y (m + n)

where y + is the right-going wave and y is the left-going wave. It can be seen from this representation that sampling the function y at a given point m and time n merely involves summing two delayed copies of its traveling waves. These traveling waves will reflect at boundaries such as the suspension points of vibrating strings or the open or closed ends of tubes. Hence the waves travel along closed loops.

Digital waveguide models therefore comprise digital delay lines to represent the geometry of the waveguide which are closed by recursion, digital filters to represent the frequency-dependent losses and mild dispersion in the medium, and often non-linear elements. Losses incurred throughout the medium are generally consolidated so that they can be calculated once at the termination of a delay line, rather than many times throughout.

Waveguides such as acoustic tubes are three-dimensional, but because their lengths are often much greater than their cross-sectional area, it is reasonable and computationally efficient to model them as one dimensional waveguides. Membranes, as used in drums, may be modeled using two-dimensional waveguide meshes, and reverberation in three dimensional spaces may be modeled using three-dimensional meshes. Vibraphone bars, bells, singing bowls and other sounding solids (also called idiophones) can be modeled by a related method called banded waveguides where multiple band-limited digital waveguide elements are used to model the strongly dispersive behavior of waves in solids.

The term "Digital Waveguide Synthesis" was coined by Julius O. Smith III who helped develop it and eventually filed the patent. It represents an extension of the Karplus-Strong algorithm. Stanford University owns the patent rights for digital waveguide synthesis and signed an agreement in 1989 to develop the technology with Yamaha.

An extension to DWG synthesis of strings made by Smith is commuted synthesis, wherein the excitation to the digital waveguide contains both string excitation and the body response of the instrument. This is possible because the digital waveguide is linear and makes it unnecessary to model the instrument body's resonances after synthesizing the string output, greatly reducing the number of computations required for a convincing resynthesis.

The prototype software implementation by Smith and colleagues was done in the Synthesis Toolkit (STK).[1][2]

Contents

Licensees

  • Yamaha
    • VL1 (1994) — expensive keyboard (about $10,000 USD)
    • VL1m, VL7 (1994) — tone module and less expensive keyboard, respectively
    • VP1 (prototype) (1994)
    • VL70m (1996) — less expensive tone module
    • EX5 (1999) — workstation keyboard that included a VL module
    • PLG-100VL, PLG-150VL (1999) — plug-in cards for various Yamaha keyboards, tone modules, and the SWG-1000 high-end PC sound card. The MU100R rack-mount tone module included two PLG slots, pre-filled with a PLG-100VL and a PLG-100VH (Vocal Harmonizer).
    • YMF-724, 744, 754, and 764 sound chips for inexpensive DS-XG PC sound cards and motherboards (the VL part only worked on Windows 95, 98, 98SE, and ME, and then only when using .VxD drivers, not .WDM). No longer made, presumably due to conflict with AC-97 and AC-99 sound card standards (which specify wavetables based on Roland’s XG-competing GS sound system, which Sondius-XG [the means of integrating VL instruments and commands into an XG-compliant MIDI stream along with wavetable XG instruments and commands] cannot integrate with). The MIDI portion of such sound chips, when the VL was enabled, was functionally equivalent to an MU50 Level 1 XG tone module (minus certain digital effects) with greater polyphony (up to 64 simultaneous notes, compared to 32 for Level 1 XG) plus a VL70m (the VL adds an additional note of polyphony, or, rather, a VL solo note backed up by the up-to-64 notes of polyphony of the XG wavetable portion). The 724 only supported stereo out, while the others supported various four and more speaker setups. Yamaha’s own card using these was the WaveForce-128, but a number of licensees made very inexpensive YMF-724 sound cards that retailed for as low as $12 at the peak of the technology’s popularity. The MIDI synth portion (both XG and VL) of the YMF chips was actually just hardware assist to a mostly software synth that resided in the device driver (the XG wavetable samples, for instance, were in system RAM with the driver [and could be replaced or added to easily], not in ROM on the sound card). As such, the MIDI synth, especially with VL in active use, took considerably more CPU power than a truly hardware synth would use, but not as much as a pure software synth. Towards the end of their market period, YMF-724 cards could be had for as little as $12 USD brand new, making them by far the least expensive means of obtaining Sondius-XG CL digital waveguide technology. The DS-XG series also included the YMF-740, but it lacked the Sondius-XG VL waveguide synthesis module, yet was otherwise identical to the YMF-744.
    • S-YXG100plus-VL Soft Synthesizer for PCs with any sound card (again, the VL part only worked on Windows 95, 98, 98SE, and ME: it emulated a .VxD MIDI device driver). Likewise equivalent to an MU50 (minus certain digital effects) plus VL70m. The non-VL version, S-YXG50, would work on any Windows OS, but had no physical modeling, and was just the MU50 XG wavetable emulator. This was basically the synth portion of the YMF chips implemented entirely in software without the hardware assist provided by the YMF chips. Required a somewhat more powerful CPU than the YMF chips did. Could also be used in conjunction with a YMF-equipped sound card or motherboard to provide up to 128 notes of XG wavetable polyphony and up to two VL instruments simultaneously on sufficiently powerful CPUs.
    • S-YXG100plus-PolyVL SoftSynth for then-powerful PCs (e. g. 333+MHz Pentium III), capable of up to eight VL notes at once (all other Yamaha VL implementations except the original VL1 and VL1m were limited to one, and the VL1/1m could do two), in addition to up to 64 notes of XG wavetable from the MU50-emulating portion of the soft synth. Never sold in the USA, but was sold in Japan. Presumably a much more powerful system could be done with today’s multi-GHz dual-core CPUs, but the technology appears to have been abandoned. Hypothetically could also be used with a YMF chipset system to combine their capabilities on sufficiently powerful CPUs.
  • Korg
    • Prophecy (1995)
    • Z1, MOSS-TRI (1997)
    • EXB-MOSS (2001)
    • OASYS PCI (1999)
    • OASYS (2005) with some modules, for instance the STR-1 plucked strings physical model[3]
    • Kronos (2011) same as OASYS
  • Technics
    • WSA1 (1995)
  • Cakewalk
    • Dimension Pro (2005) - software synthesizer for OS X and Windows XP.[4]

References

Further reading

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Banded waveguide synthesis — Banded Waveguides Synthesis is a physical modeling synthesis method to simulate sounds of dispersive sounding objects, or objects with strongly inharmonic resonant frequencies efficiently. It can be used to model the sound of instruments based on …   Wikipedia

  • Waveguide — This page is about waveguides in the most general sense. For ordinary metal pipe waveguides, Waveguide (electromagnetism). For optical waveguides, see Waveguide (optics). A section of flexible waveguide with a pressurizable flange …   Wikipedia

  • Digital delay line — A digital delay line is a discrete element in digital filter theory, which allows a signal to be delayed by a number of samples. If the delay is an integer multiple of samples digital delay lines are often implemented as circular buffers. This… …   Wikipedia

  • Physical modelling synthesis — In sound synthesis, physical modelling synthesis refers to methods in which the waveform of the sound to be generated is computed by using a mathematical model, being a set of equations and algorithms to simulate a physical source of sound,… …   Wikipedia

  • Speech synthesis — Stephen Hawking is one of the most famous people using speech synthesis to communicate Speech synthesis is the artificial production of human speech. A computer system used for this purpose is called a speech synthesizer, and can be implemented… …   Wikipedia

  • Distortion synthesis — is a group of sound synthesis techniques which modify existing sounds to produce more complex sounds (or timbres), usually by using non linear circuits or mathematics.[1] While some synthesis methods achieve sonic complexity by using many… …   Wikipedia

  • Karplus-Strong string synthesis — is a method of physical modelling synthesis that loops a short waveform through a filtered delay line to simulate the sound of a hammered or plucked string or some types of percussion.Although it is useful to view this as a subtractive synthesis… …   Wikipedia

  • Articulatory synthesis — refers to computational techniques for synthesizing speech based on models of the human vocal tract and the articulation processes occurring there. The shape of the vocal tract can be controlled in a number of ways which usually involves… …   Wikipedia

  • Analoge Klangerzeugung — Synthesizer Ein Micromoog Klassifikation Elektrophon Tonumfang gesamter Hörbereich verwandte Instrumente Software Synthesizer …   Deutsch Wikipedia

  • Analogsynthesizer — Synthesizer Ein Micromoog Klassifikation Elektrophon Tonumfang gesamter Hörbereich verwandte Instrumente Software Synthesizer …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”