Zero morphism

Zero morphism

In category theory, a zero morphism is a special kind of morphism exhibiting properties like those to and from a zero object.

Suppose C is a category, and f : XY is a morphism in C. The morphism f is called a constant morphism (or sometimes left zero morphism) if for any object W in C and any g, h : WX, fg = fh. Dually, f is called a coconstant morphism (or sometimes right zero morphism) if for any object Z in C and any g, h ∈ MorC(Y, Z), gf = hf. A zero morphism is one that is both a constant morphism and a coconstant morphism.

If C has a zero object 0, given two objects X and Y in C, there are canonical morphisms f : 0X and g : Y0. Then, fg is a zero morphism in MorC(Y, X).

A category with zero morphisms is one where, for any two objects A and B in C, there is a fixed morphism 0AB : AB such that for all objects X, Y, Z in C and all morphisms f : YZ, g : XY, the following diagram commutes:

ZeroMorphism.png

The morphisms 0XY are forced to be zero morphisms and form a compatible system of such. If C is a category with zero morphisms, then the collection of 0XY is unique. A category with a zero object is a category with zero morphisms (given by the composition 0XY : X0Y described above).

If a category has zero morphisms, then one can define the notions of kernel and cokernel for any morphism in that category.

Examples

  • More generally, suppose C is any category with a zero object 0. Then for all objects X and Y there is a unique sequence of morphisms
0XY : X0Y
The family of all morphisms so constructed endows C with the structure of a category with zero morphisms.
  • If C is a preadditive category, then every morphism set Mor(X,Y) is an abelian group and therefore has a zero element. These zero elements form a compatible family of zero morphisms for C making it into a category with zero morphisms.
  • The category Set (sets with functions as morphisms) does not have a zero object, but it does have an initial object, the empty set ∅. The only zero morphisms in Set are the functions ∅ → X for a set X.

References

  • Section 1.7 of Pareigis, Bodo (1970), Categories and functors, Pure and applied mathematics, 39, Academic Press, ISBN 978-0-12-545150-5 
  • Herrlich, Horst; Strecker, George E. (1973), Category Theory, Allen and Bacon, Inc. Boston .

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Morphism — In mathematics, a morphism is an abstraction derived from structure preserving mappings between two mathematical structures. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear… …   Wikipedia

  • List of zero terms — The number 0 is an important concept in mathematics.Zero moduleIn mathematics, the zero module is the module consisting of only the additive identity for the module s addition function. In the integers, this identity is zero, which gives the name …   Wikipedia

  • Étale morphism — In algebraic geometry, a field of mathematics, an étale morphism (pronunciation IPA|) is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem,… …   Wikipedia

  • Proper morphism — In algebraic geometry, a proper morphism between schemes is an analogue of a proper map between topological spaces. Contents 1 Definition 2 Examples 3 Properties and characterizations of proper morphisms …   Wikipedia

  • 0 (number) — Zero redirects here. For other uses, see Zero (disambiguation). 0 −1 0 1 2 3 4 5 6 7 8 …   Wikipedia

  • Initial and terminal objects — Terminal element redirects here. For the project management concept, see work breakdown structure. In category theory, an abstract branch of mathematics, an initial object of a category C is an object I in C such that for every object X in C,… …   Wikipedia

  • Preadditive category — In mathematics, specifically in category theory, a preadditive category is a category that is enriched over the monoidal category of abelian groups. In other words, the category C is preadditive if every hom set Hom(A,B) in C has the structure of …   Wikipedia

  • Kernel (category theory) — In category theory and its applications to other branches of mathematics, kernels are a generalization of the kernels of group homomorphisms and the kernels of module homomorphisms and certain other kernels from algebra. Intuitively, the kernel… …   Wikipedia

  • Additive category — In mathematics, specifically in category theory, an additive category is a preadditive category C such that any finitely many objects A 1,..., A n of C have a biproduct A 1 ⊕ ⋯ ⊕ A n in C. (Recall that a category C is preadditive if all its… …   Wikipedia

  • Representation theory of finite groups — In mathematics, representation theory is a technique for analyzing abstract groups in terms of groups of linear transformations. See the article on group representations for an introduction. This article discusses the representation theory of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”