- Cosmic string
-
Not to be confused with string in string theory.
Cosmic strings are hypothetical 1-dimensional (spatially) topological defects which may have formed during a symmetry breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking is not simply connected. It is expected that at least one string per Hubble volume is formed. Their existence was first contemplated by the theoretical physicist Tom Kibble in the 1970s. The formation of cosmic strings is somewhat analogous to the imperfections that form between crystal grains in solidifying liquids, or the cracks that form when water freezes into ice. The phase transitions leading to the production of cosmic strings are likely to have occurred during the earliest moments of the universe's evolution just after cosmological inflation and are a fairly generic prediction in both Quantum field theory and String theory models of the Early universe. In string theory the role of cosmic strings can be played by the fundamental strings (or F-strings) themselves that define the theory perturbatively, by D-strings which are related to the F-strings by weak-strong or so called S-duality, or higher dimensional D-, NS- or M-branes that are partially wrapped on compact cycles associated to extra spacetime dimensions so that only one non-compact dimension remains, see the article by Copeland, Myers and Polchinski (pdf). The prototypical example of a quantum field theory with cosmic strings is the Abelian Higgs model. The quantum field theory and string theory cosmic strings are expected to have many properties in common, but more research is needed to determine the precise distinguishing features. The F-strings for instance are fully quantum-mechanical and do not have a classical definition, whereas the field theory cosmic strings are almost exclusively treated classically.
Cosmic strings, if they exist, would be extremely thin with diameters of the same order of magnitude as that of a proton, i.e. ~ 1 fm, or smaller. Given that this scale is much smaller than any cosmological scale these strings are often studied in the zero width, or Nambu-Goto approximation. Under this assumption strings behave as one-dimensional objects and obey the Nambu-Goto action, which is classically equivalent to the Polyakov action that defines the bosonic sector of superstring theory. Even though cosmic strings are thought to be extremely thin they would have immense density and so would represent significant gravitational wave sources. In field theory, the string width is set by the scale of the symmetry breaking phase transition. In string theory, the string width is set (in the simplest cases) by the fundamental string scale, warp factors (associated to the spacetime curvature of an internal six-dimensional spacetime manifold) and/or the size of internal compact dimensions. (In string theory, the universe is either 10- or 11-dimensional, depending on the strength of interactions and the curvature of spacetime.) A cosmic string about a kilometer in length may be more massive than the Earth. However general relativity predicts that the gravitational potential of a straight string vanishes: there is no gravitational force on static surrounding matter. The only gravitational effect of a straight cosmic string is a relative deflection of matter (or light) passing the string on opposite sides (a purely topological effect). A closed cosmic string gravitates in a more conventional way. During the expansion of the universe, cosmic strings would form a network of loops, and in the past it was thought that their gravity could have been responsible for the original clumping of matter into galactic superclusters. It is now known that their contribution to the structure formation in the universe is less than 10%.
Other types of topological defects in spacetime are domain walls, monopoles, and textures.
Contents
Observational evidence
It was once thought that the gravitational influence of cosmic strings might contribute to the large-scale clumping of matter in the universe, but all that is known today through galaxy surveys and precision measurements of the cosmic microwave background (CMB) fits an evolution out of random, gaussian fluctuations. These precise observations therefore tend to rule out a significant role for cosmic strings and currently it is known that the contribution of cosmic strings to the CMB cannot be more than 10%.
The violent oscillations of cosmic strings generically lead to the formation of cusps and kinks. These in turn cause parts of the string to pinch off into isolated loops. These loops have a finite lifespan and decay (primarily) via gravitational radiation. This radiation which leads to the strongest signal from cosmic strings may in turn be detectable in gravitational wave experiments, such as LIGO and LISA. An important open question is to what extent do the pinched off loops backreact or change the initial state of the emitting cosmic string—such backreaction effects are almost always neglected in computations and are known to be important, even for order of magnitude estimates.
Gravitational lensing of a galaxy by a straight section of a cosmic string would produce two identical, undistorted images of the galaxy. In 2003 a group led by Mikhail Sazhin reported the accidental discovery of two seemingly identical galaxies very close together in the sky, leading to speculation that a cosmic string had been found.[1] However, observations by the Hubble Space Telescope in January 2005 showed them to be a pair of similar galaxies, not two images of the same galaxy.[2][3] A cosmic string would produce a similar duplicate image of fluctuations in the cosmic microwave background, which might be detectable by the Planck Surveyor mission.[4]
A second piece of evidence supporting cosmic string theory is a phenomenon observed in observations of the "double quasar" called Q0957+561A,B. Originally discovered by Dennis Walsh, Bob Carswell, and Ray Weymann in 1979, the double image of this quasar is caused by a galaxy positioned between it and the Earth. The gravitational lens effect of this intermediate galaxy bends the quasar's light so that it follows two paths of different lengths to Earth. The result is that we see two images of the same quasar, one arriving a short time after the other (about 417.1 days later).
However, a team of astronomers at the Harvard-Smithsonian Center for Astrophysics led by Rudolph Schild studied the quasar and found that during the period between September 1994 and July 1995 the two images appeared to have no time delay; changes in the brightness of the two images occurred simultaneously on four separate occasions. Schild and his team believe that the only explanation for this observation is that a cosmic string passed between the Earth and the quasar during that time period traveling at very high speed and oscillating with a period of about 100 days.[5]
The earthbound Laser Interferometer Gravitational-Wave Observatory (LIGO) and especially the space-based gravitational wave detector Laser Interferometer Space Antenna (LISA) will search for gravitational waves and are likely to be sensitive enough to detect signals from cosmic strings, provided the relevant cosmic string tensions are not too small.
String theory and cosmic strings
During the early days of string theory both string theorists and cosmic string theorists believed that there was no direct connection between superstrings and cosmic strings (the names were chosen independently by analogy with ordinary string). The possibility of cosmic strings being produced in the early universe was first envisioned by quantum field theorist Tom Kibble in 1976, and this sprouted the first flurry of interest in the field. In 1985, during the first superstring revolution, Edward Witten contemplated on the possibility of fundamental superstrings having been produced in the early universe and stretched to macroscopic scales, in which case (following the nomenclature of Tom Kibble) they would then be referred to as cosmic superstrings. He concluded that had they been produced they would have either disintegrated into smaller strings before ever reaching macroscopic scales (in the case of Type I superstring theory), they would always appear as boundaries of domain walls whose tension would force the strings to collapse rather than grow to cosmic scales (in the context of Heterotic superstring theory), or having a characteristic energy scale close to the Planck energy they would be produced before cosmological inflation and hence be diluted away with the expansion of the universe and not be observable.
Much has changed since these early days, primarily due to the second superstring revolution. It is now known that string theory in addition to the fundamental strings which define the theory perturbatively also contains other one-dimensional objects, such as D-strings, and higher dimensional objects such as D-branes, NS-branes and M-branes partially wrapped on compact internal spacetime dimensions, while being spatially extended in one non-compact dimension. The possibility of large compact dimensions and large warp factors allows strings with tension much lower than the Planck scale. Furthermore, various dualities that have been discovered point to the conclusion that actually all these apparently different types of string are just the same object as it appears in different regions of parameter space. These new developments have largely revived interest in cosmic strings, starting in the early 2000s.
In 2002, Henry Tye and collaborators predicted the production of cosmic superstrings during the last stages of brane inflation,[6] a string theory construction of the early universe that gives leads to an expanding universe and cosmological inflation. It was subsequently realized by string theorist Joseph Polchinski that the expanding Universe could have stretched a "fundamental" string (the sort which superstring theory considers) until it was of intergalactic size. Such a stretched string would exhibit many of the properties of the old "cosmic" string variety, making the older calculations useful again. As theorist Tom Kibble remarks, "string theory cosmologists have discovered cosmic strings lurking everywhere in the undergrowth". Older proposals for detecting cosmic strings could now be used to investigate superstring theory.
Superstrings, D-strings or the other stringy objects mentioned above stretched to intergalactic scales would radiate gravitational waves, which could be detected using experiments like LIGO and especially the space-based gravitational wave experiment LISA. They might also cause slight irregularities in the cosmic microwave background, too subtle to have been detected yet but possibly within the realm of future observability.
Note that most of these proposals depend, however, on the appropriate cosmological fundamentals (strings, branes, etc.), and no convincing experimental verification of these has been confirmed to date. Cosmic strings nevertheless provide a window into string theory. If cosmic strings are observed which is a real possibility for a wide range of cosmological string models this would provide the first experimental evidence of a string theory model underlying the structure of spacetime.
See also
- 0-dimensional topological defect: magnetic monopole
- 1-dimensional topological defect: cosmic string
- 2-dimensional topological defect: domain wall
- cosmic string loop stabilised by a fermionic supercurrent: vorton
References
- ^ Sazhin, Mikhail; et al. (August 2003). "CSL-1: chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?". Monthly Notices of the Royal Astronomical Society 343 (2): 353. arXiv:astro-ph/0302547. Bibcode 2003MNRAS.343..353S. doi:10.1046/j.1365-8711.2003.06568.x.
- ^ Hubble imaging excludes cosmic string lens, Physical Review D, volume 73 page 087302, 2006
- ^ 2 Feb 2006, The true nature of CSL-1, M. V. Sazhin, M. Capaccioli, G. Longo, M. Paolillo, O. S. Khovanskaya, N. A. Grogin, E. J. Schreier, G. Covone arXiv:astro-ph/0601494
- ^ Fraisse, A.; Ringeval, C.; Spergel, D. N. and Bouchet, F.R. (2008). "Small-angle CMB temperature anisotropies induced by cosmic strings". Phys. Rev. D78 (4): 043535. arXiv:0708.1162. Bibcode 2008PhRvD..78d3535F. doi:10.1103/PhysRevD.78.043535.
- ^ Anomalous fluctuations in observations of Q0957+561 A,B: Smoking gun of a cosmic string?, R. Schild, I. S. Masnyak, B. I. Hnatyk and V. I. Zhdanov, Astronomy and Astrophysics, volume 422, pages 477-482, August 2004
- ^ Cosmic string production towards the end of brane inflation, S. Sarangi, S. H. Henry Tye, Phys. Lett. B, volume 536, pages 185-192, 2002
- Dr. Kip Thorne, ITP & CalTech. Spacetime Warps and the Quantum: A Glimpse of the Future. Lecture slides and audio
External links
- http://www.damtp.cam.ac.uk/user/gr/public/cs_interact.html
- astro-ph/0302547 CSL-1: a chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?
- astro-ph/0406434 Anomalous Fluctuations in Observations of Q0957+561 A,B: Smoking Gun of a Cosmic String?
- astro-ph/0410073 Cosmic strings reborn?
- astro-ph/0503120 Signatures of Cosmic Strings in the Cosmic Microwave Background
- astro-ph/0506400 Further spectroscopic observations of the CSL-1 object
- astro-ph/0603838 Hubble Imaging Excludes Cosmic String Lens
- Cosmic strings and superstrings on arxiv.org
Categories:- Large-scale structure of the cosmos
- Hypothetical astronomical objects
Wikimedia Foundation. 2010.