Polyakov action

Polyakov action

In physics, the Polyakov action is the two-dimensional action of a conformal field theory describing the worldsheet of a string in string theory. It was introduced by S.Deser and B.Zumino and independently by L.Brink, P.Di Vecchia and P.S.Howe (in Physics Letters B65, pgs 369 and 471 respectively), and has become associated with Alexander Polyakov after he made use of it in quantizing the string. The action reads

:mathcal{S} = {T over 2}int mathrm{d}^2 sigma sqrt{-h} h^{ab} g_{mu u} (X) partial_a X^mu (sigma) partial_b X^ u(sigma)

where T is the string tension, g_{mu u} is the metric of the target manifold, h^{ab} is the worldsheet metric and h is the determinant of h_{ab}. The metric signature is chosen such that timelike directions are + and the spacelike directions are -. The spacelike worldsheet coordinate is called sigma wheareas the timelike worldsheet coordinate is called au .

Global symmetries

The action is invariant under spacetime translations and infinitesimal Lorentz transformations::(i) X^alpha ightarrow X^alpha + b^alpha :(ii) X^alpha ightarrow X^alpha + omega^alpha_{ eta} X^eta where omega_{mu u} = - omega_{ u mu} and b^alpha is a constant. This forms the Poincaré symmetry of the target manifold.

The invariance under (i) follows since the action mathcal{S} depends only on the first derivative of X^alpha . The proof of the invariance under (ii) is as follows:

::

Local symmetries

The action is invariant under worldsheet diffeomorphisms (or coordinates transformations) and Weyl transformations.

Diffeomorphisms

Assume the following transformation::: sigma^alpha ightarrow ilde{sigma}^alphaleft(sigma, au ight) It transforms the Metric tensor in the following way::: h^{ab} ightarrow ilde{h}^{ab} = h^{cd} frac{partial ilde{sigma}^a}{partial sigma^c} frac{partial ilde{sigma}^b}{partial sigma^d} One can see that::: ilde{h}^{ab} frac{partial}{partial ilde{sigma}^a} X^mu frac{partial}{partial ilde{sigma}^b} X^ u = h^{cd} frac{partial ilde{sigma}^a}{partial sigma^c} frac{partial ilde{sigma}^b}{partial sigma^d} frac{partial}{partial ilde{sigma}^a} X^mu frac{partial}{partial ilde{sigma}^b} X^ u = h^{ab} partial_a X^mu partial_b X^ u One knows that the Jacobian of this transformation is given by::: mathrm{J} = mathrm{det} left( frac{partial ilde{sigma}^alpha}{partial sigma^eta} ight) which leads to::: mathrm{d}^2 sigma ightarrow mathrm{d}^2 ilde{sigma} = mathrm{J} mathrm{d}^2 sigma , :: h = mathrm{det} left( h_{ab} ight) ightarrow ilde{h} = mathrm{J}^{-2} h , and one sees that::: sqrt{- ilde{h mathrm{d}^2 ilde{sigma} = sqrt{-h} mathrm{d}^2 sigma summing up this transformation leaves the action invariant.

Weyl transformation

Assume the Weyl transformation::: h_{ab} ightarrow ilde{h}_{ab} = Lambda(sigma) h_{ab} then::: ilde{h}^{ab} = Lambda^{-1}(sigma) h^{ab} :: mathrm{det} ( ilde{h}_{ab} ) = Lambda^2(sigma) h_{ab} And finally:::And one can see that the action is invariant under Weyl transformation. If we consider n-dimensional (spatially) extended objects whose action is proportional to their worldsheet area/hyperarea, unless n=1, the corresponding Polyakov action would contain another term breaking Weyl symmetry.

One can define the Stress-energy tensor::: T_{ab} = frac{2}{sqrt{-h frac{delta S}{delta h^{ab Let's define::: h_{ab} = expleft(phi(sigma) ight) hat{h}_{ab} Because of Weyl symmetry the action does not depend on phi ::: frac{delta S}{delta phi} = frac{delta S}{delta h^{ab frac{delta h^{ab{delta phi} = frac12 sqrt{-h} T_{ab} h^{ab} = frac12 sqrt{-h} T_a^{ a} = 0 ightarrow T_a^{ a} = mathrm{tr} left( T_{ab} ight) = 0

Relation with Nambu-Goto action

Writing the Euler-Lagrange equation for the metric tensor h^{ab} one obtains that::: frac{delta S}{delta h^{ab = T^{ab} = 0 Knowing also that::: delta sqrt{-h} = -frac12 sqrt{-h} h_{ab} delta h^{ab} One can write the variational derivative of the action::: frac{delta S}{delta h^{ab = frac{T}{2} sqrt{-h} left( G_{ab} - frac12 h_{ab} h^{cd} G_{cd} ight) where G_{ab} = g_{mu u} partial_a X^mu partial_b X^ u which leads to::: T_{ab} = T left( G_{ab} - frac12 h_{ab} h^{cd} G_{cd} ight) = 0 :: G_{ab} = frac12 h_{ab} h^{cd} G_{cd} :: G = mathrm{det} left( G_{ab} ight) = frac14 h left( h^{cd} G_{cd} ight)^2

If the auxiliary worldsheet metric tensor sqrt{-h} is calculated from the equations of motion::: sqrt{-h} = frac{2 sqrt{-G{h^{cd} G_{cd and substituted back to the action, it becomes the Nambu-Goto action::: S = {T over 2}int mathrm{d}^2 sigma sqrt{-h} h^{ab} G_{ab} = {T over 2}int mathrm{d}^2 sigma frac{2 sqrt{-G{h^{cd} G_{cd h^{ab} G_{ab} = T int mathrm{d}^2 sigma sqrt{-G}

However, the Polyakov action is more easily quantized because it is linear.

Equations of motion

Using diffeomorphisms and Weyl transformation one can transform the action into the following form::: mathcal{S} = {T over 2}int mathrm{d}^2 sigma sqrt{-eta} eta^{ab} g_{mu u} (X) partial_a X^mu (sigma) partial_b X^ u(sigma) = {T over 2}int mathrm{d}^2 sigma left( dot{X}^2 - X'^2 ight) where eta_{ab} = left( egin{array}{cc} 1 & 0 \ 0 & -1 end{array} ight)

Keeping in mind that T_{ab} = 0 one can derive the constraints::: T_{01} = T_{10} = dot{X} X' = 0 :: T_{00} = T_{11} = frac12 left( dot{X}^2 + X'^2 ight) = 0 .

Substituting X^mu ightarrow X^mu + delta X^mu one obtains::: delta mathcal{S} = T int mathrm{d}^2 sigma eta^{ab} partial_a X^mu partial_b delta X_mu =

::: = -T int mathrm{d}^2 sigma eta^{ab} partial_a partial_b X^mu delta X_mu + left( T int d au X' delta X ight)_{sigma=pi} - left( T int d au X' delta X ight)_{sigma=0} = 0

And consequently::: square X^mu = eta^{ab} partial_a partial_b X^mu = 0

With the boundary conditions in order to satisfy the second part of the variation of the action.
* Closed strings: Periodic boundary conditions: X^mu( au, sigma + 2 pi) = X^mu( au, sigma)
* Open strings:(i) Neumann boundary conditions: partial_sigma X^mu ( au, 0) = 0, partial_sigma X^mu ( au, pi) = 0 :(ii) Dirichlet boundary conditions: X^mu( au, 0) = b^mu, X^mu( au, pi) = b'^mu

See also

* D-brane
* Einstein-Hilbert action

References

* Polchinski (Nov, 1994). "What is String Theory", NSF-ITP-94-97, 153pp,
* Ooguri, Yin (Feb, 1997). "TASI Lectures on Perturbative String Theories", UCB-PTH-96/64, LBNL-39774, 80pp,


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Polyakov — ( ru. Поляков), or Polyakova (feminine; Полякова) is a Russian last name and may refer to:;People *Alexander Polyakov, a Russian/American physicist *Anisim Polyakov (1904 ?), a Soviet academician and scientist in the field of veterinary… …   Wikipedia

  • Polyakov-Wirkung — Die Polyakov Wirkung (engl. Polyakov action) ist die zweidimensionale Wirkung einer konformen Feldtheorie, welche die Weltfläche eines Strings beschreibt. Benannt ist sie nach Alexander Markowitsch Poljakow. Formulierung Parametrisierung der… …   Deutsch Wikipedia

  • Alexander Polyakov — Infobox Scientist name = Alexander M. Polyakov birth date = birth date|1945|09|27 birth place = USSR nationality = death date = death place = field = Theoretical High Energy Physics work institution = Princeton University Landau Institute for… …   Wikipedia

  • Nambu-Goto action — The Nambu Goto action is the simplest invariant action in bosonic string theory. It is the starting point of the analysis of string behavior, using the principles of Lagrangian mechanics. Just as the action for a free point particle is… …   Wikipedia

  • Nambu–Goto action — The Nambu–Goto action is the simplest invariant action in bosonic string theory, and is also used in other theories that investigate string like objects (for example, cosmic strings). It is the starting point of the analysis of zero thickness… …   Wikipedia

  • String theory — This article is about the branch of theoretical physics. For other uses, see String theory (disambiguation). String theory …   Wikipedia

  • List of Russian people — The Millennium of Russia monument in Veliky Novgorod, featuring the statues and reliefs of the most celebrated people in the first 1000 years of Russian history …   Wikipedia

  • Poljakow-Wirkung — Die Polyakov Wirkung (engl. Polyakov action) ist die zweidimensionale Wirkung einer konformen Feldtheorie, welche die Weltfläche eines Strings beschreibt. Benannt ist sie nach Alexander Markowitsch Poljakow. Formulierung …   Deutsch Wikipedia

  • List of string theory topics — See also: List of mathematical topics in quantum theory This is an list of string theory topics. Contents 1 String theory 1.1 String duality 1.2 Particles and fields 1 …   Wikipedia

  • QCD string — In quantum chromodynamics, or more generally, quantum gauge theories with a connection which are confining, stringlike degrees of freedom called QCD strings or QCD flux tubes form. These stringlike excitations are responsible for the confinement… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”