Neusis construction

Neusis construction
Neusis construction

The neusis is a geometric construction method that was used in antiquity by Greek mathematicians.

Contents

Geometric construction

The neusis construction (from Greek νεῦσις from νεύειν neuein "incline towards"; plural: νεύσεις neuseis) consists of fitting a line element of given length (a) in between two given lines (l and m), in such a way that the line element, or its extension, passes through a given point P. That is, one end of the line element has to lie on l, the other end on m, while the line element is "inclined" towards P.

A neusis construction might be performed by means of a 'Neusis Ruler': a marked ruler that is rotatable around the point P (this may be done by putting a pin into the point P and then pressing the ruler against the pin). In the figure one end of the ruler is marked with a yellow eye with crosshairs: this is the origin of the scale division on the ruler. A second marking on the ruler (the blue eye) indicates the distance a from the origin. The yellow eye is moved along line l, until the blue eye coincides with line m. The position of the line element thus found is shown in the figure as a dark blue bar.

Point P is called the pole of the neusis, line l the directrix, or guiding line, and line m the catch line. Length a is called the diastema (διάστημα; Greek for "distance").

Neusis trisection of an angle θ>135° to find φ=θ/3, using only the length of the ruler. The radius of the arc is equal to the length of the ruler. For angles θ<135° the same construction applies, but with P extended beyond AB.

Use of the neusis

Neuseis have been important because they sometimes provide a means to solve geometric problems that are not solvable by means of compass and straightedge alone. Examples are the trisection of any angle in three equal parts, or the construction of a regular heptagon. Mathematicians such as Archimedes of Syracuse (287–212 BC) freely used neuseis. Nevertheless, gradually the technique dropped out of use.

Waning popularity

T. L. Heath, the historian of mathematics, has suggested that the Greek mathematician Oenopides (ca. 440 BC) was the first to put compass and straightedge constructions above neuseis. The principle to avoid neuseis whenever possible, may have been spread by Hippocrates of Chios (ca. 430 BC), who originated from the same island as Oenopides, and who was—as far as we know—the first to write a systematically ordered geometry textbook. One hundred years after him Euclid too shunned neuseis in his very influential textbook, The Elements.

The next attack on the neusis came when, from the fourth century BC, Plato's idealism gained ground. Under its influence a hierarchy of three classes of geometrical constructions was developed. Descending from the "abstract and noble" to the "mechanical and earthly", the three classes were:

  1. constructions with straight lines and circles only (compass and straightedge);
  2. constructions that in addition to this use conic sections (ellipses, parabolas, hyperbolas);
  3. constructions that needed yet other means of construction, for example neuseis.

In the end the use of neusis was deemed acceptable only when the two other, higher categories of constructions did not offer a solution. Neusis became a kind of last resort that was invoked only when all other, more respectable, methods had failed. Using neusis where other construction methods might have been used, was branded by the late Greek mathematician Pappus of Alexandria (ca. 325 AD) as "a not inconsiderable error".

See also

References

  • R. Boeker, 'Neusis', in: Paulys Realencyclopädie der Classischen Altertumswissenschaft, G. Wissowa red. (1894–), Supplement 9 (1962) 415–461.–In German. The most comprehensive survey; however, the author sometimes has rather curious opinions.
  • T. L. Heath, A history of Greek Mathematics (2 volumes; Oxford 1921).
  • H. G. Zeuthen, Die Lehre von den Kegelschnitten im Altertum [= The Theory of Conic Sections in Antiquity] (Copenhagen 1886; reprinted Hildesheim 1966).

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Greek arithmetic, geometry and harmonics: Thales to Plato — Ian Mueller INTRODUCTION: PROCLUS’ HISTORY OF GEOMETRY In a famous passage in Book VII of the Republic starting at Socrates proposes to inquire about the studies (mathēmata) needed to train the young people who will become leaders of the ideal… …   History of philosophy

  • Regla y compás — Construcción de un hexágono regular con regla y compás …   Wikipedia Español

  • Angle trisection — The problem of trisecting the angle is a classic problem of compass and straightedge constructions of ancient Greek mathematics.Two tools are allowed # An un marked straightedge, and # a compass, Problem: construct an angle one third a given… …   Wikipedia

  • Heptagon — In geometry, a heptagon is a polygon with seven sides and seven angles. In a regular heptagon, in which all sides and all angles are equal, the sides meet at an angle of 5π/7 radians, 128.5714286 degrees. Its Schläfli symbol is {7}. The area of a …   Wikipedia

  • Euclid's Elements — (Greek: polytonic|Στοιχεῖα) is a mathematical and geometric treatise consisting of 13 books written by the Greek mathematician Euclid in Alexandria circa 300 BC. It comprises a collection of definitions, postulates (axioms), propositions… …   Wikipedia

  • Mathematics of paper folding — The art of origami or paper folding has received a considerable amount of mathematical study. Fields of interest include a given paper model s flat foldability (whether the model can be flattened without damaging it) and the use of paper folds to …   Wikipedia

  • Triskaidecagon — In Geometry, a triskaidecagon (or tridecagon) is a polygon with 13 sides and angles. The measure of each internal angle of a regular triskaidecagon is approximately 152.308 degrees, and the area with side length a is given by:A = frac{13}{4}a^2… …   Wikipedia

  • List of mathematics articles (N) — NOTOC N N body problem N category N category number N connected space N dimensional sequential move puzzles N dimensional space N huge cardinal N jet N Mahlo cardinal N monoid N player game N set N skeleton N sphere N! conjecture Nabla symbol… …   Wikipedia

  • Constructible polygon — Construction of a regular pentagon In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular… …   Wikipedia

  • Heptagone — Un heptagone est un polygone à sept sommets et sept côtés. Un heptagone régulier est un heptagone dans lequel tous les côtés sont égaux et tous les angles sont égaux. Les angles sont alors tous égaux à . L heptagone régulier s inscrit dans un… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”