Rail transport

Rail transport

:"Railroad" and "Railway" both redirect here. For other uses, see Railroad (disambiguation)."

Rail transport is the conveyance of passengers and goods by means of wheeled vehicles specially designed to run along railways or railroads. Rail transport is part of the logistics chain, which facilitates international trade and economic growth in most countries.

Typical railway tracks consist of two parallel rails, normally made of steel, secured to crossbeams, termed "sleepers" (UK and Australia) or "ties" (U.S. & Canada). The sleepers maintain a constant distance between the two rails; a measurement known as the "gauge" of the track. To maintain the alignment of the track it is either laid on a bed of ballast or else secured to a solid concrete foundation. The whole is referred to as permanent way (UK and Australia usage) or right-of-way (North American usage).

Railway rolling stock, which is fitted with metal wheels, moves with low frictional resistance when compared to road vehicles. On the other hand, locomotives and powered cars normally rely on the point of contact of the wheel with the rail for traction and adhesion (the part of the transmitted axle load that makes the wheel "adhere" to the smooth rail). While this is usually sufficient under normal dry rail conditions, adhesion can be reduced or even lost through the presence of unwanted material on the rail surface, such as moisture, grease, ice, or dead leaves. [cite web| url=http://portal.railresearch.org.uk/RRUK/Shared%20Documents/rssba2a.pdf| title=New Rail Materials and Coatings| publisher=railresearch.org| date=2003| accessdate=2007-12-02| ]

General

carries 14 million passengers a day, making it one of the busiest railway networks in the world. [cite web
url=http://www.indianembassy.org/i_digest/2004/jan_31/indian_railways.htm
title=India's poll-eve railway budget spares passengers
publisher=www.indianembassy.org
accessdate=2008-07-30
] ] Rail transport is an energy-efficient [ [http://www.progressiverailroading.com/news/article.asp?id=16740 Railroad Fuel Efficiency Sets New Record] - American Association of Railroads] and capital-intensive means of mechanised land transport and is a component of logistics. Along with various engineered components, rails constitute a large part of the permanent way. They provide smooth and hard surfaces on which the wheels of the train can roll with a minimum of friction. As an example, a typical modern wagon can hold up to 125 tons of freight on two four-wheel bogies/trucks (100 tons in UK). The contact area between each wheel and the rail is tiny, a strip no more than a few millimetres wide, which minimizes friction. In addition, the track distributes the weight of the train evenly, allowing significantly greater loads per axle / wheel than in road transport, leading to less wear and tear on the permanent way. This can save energy compared with other forms of transportation, such as road transport, which depends on the friction between rubber tires and the road. Trains also have a small frontal area in relation to the load they are carrying, which cuts down on forward air resistance and thus energy usage, although this does not necessarily reduce the effects of side winds.

Due to these various benefits, rail transport is a major form of public transport in many countries. In Asia, for example, many millions use trains as regular transport in India, China, South Korea and Japan. It is also widespread in European countries. By comparison, intercity rail transport in the United States is relatively scarce outside the Northeast Corridor, although a number of major U.S. cities have heavily-used, local rail-based passenger transport systems or light rail or commuter rail operations.cite web| url=http://www.apta.com/research/stats/ridership/| title=Public Transportation Ridership Statistics| publisher=American Public Transportation Association| date=2007| accessdate=2007-09-10| ]

The vehicles travelling on the rails, collectively known as "rolling stock", are arranged in a linked series of vehicles called a train, which can include a locomotive if the vehicles are not individually powered. A locomotive (or "engine") is a powered vehicle used to haul a train of unpowered vehicles. In the USA, individual unpowered vehicles are known generically as "cars". These may be passenger carrying or used for freight purposes. For passenger-carrying vehicles, the term "carriage or coach" is used, while a freight-carrying vehicle is known as a "freight car" in the United States and a "wagon" or "truck" in Great Britain. An individually-powered passenger vehicle is known as a "railcar" or a "power car"; when one or more as these are coupled to one or more unpowered "trailer cars" as an inseparable unit, this is called a "railcar set" or "multiple unit".

History

Stone rails

The earliest evidence of a railway found thus far was the convert|6|km|1|adj=on Diolkos wagonway, which transported boats across the Corinth isthmus in Greece during the 6th century BC. Trucks pushed by slaves ran in grooves in limestone, which provided the track element, preventing the wagons from leaving the intended route. The Diolkos ran for over 1300 years, until 900 AD. [ Dr M. J. T Lewis,University of Hull, [http://www.sciencenews.gr/docs/diolkos.pdf Railways in the Greek and Roman World] ] The first horse-drawn wagonways also appeared in ancient Greece, with others to be found on Malta and various parts of the Roman Empire, using cut-stone tracks. An example of stone track still exists on Dartmoor, England, where the Haytor Granite Tramway was built in 1820 using grooved granite blocks.

Wooden rails

Railways began reappearing in Europe after the Dark Ages following the collapse of the Roman Empire. The earliest known record of a railway in Europe from this period is a stained-glass window in the Minster of Freiburg im Breisgau dating from around 1350.cite book |last=Hylton |first=Stuart |title=The Grand Experiment: The Birth of the Railway Age 1820-1845 |publisher=Ian Allan Publishing |year=2007] By 1550, narrow gauge railways operating with wooden rails were common in mines in Europe. [Georgius Agricola (trans Hoover), "De re metallica" (1913)] The first railways in Great Britain (also known as wagonways) were constructed in the early 17th century, mainly for transporting coal from mines to canal wharfs where it could be transferred to a boat for onward shipment. The earliest recorded examples are the Wollaton Wagonway in Nottinghamshire and the Bourtreehill - Broomlands Wagonway in Irvine, Ayrshire. Other examples can be found in Broseley in Shropshire, where wooden rails and flanged wheels were utilised, as on a modern railway. However, the rails were prone to wear out under the pressure, and had to be replaced regularly.

Iron plate rail

In 1768, the Coalbrookdale Iron Works laid cast iron plates on top of the wooden rails, providing a more durable load-bearing surface. These were later used by Benjamin Outram at his foundry in Ripley, Derbyshire, the first time standardised components were produced. It was these that led to the name "platelayer" for workers on the permanent way. The advantage was that a considerable variation in wheel spacing (gauge) could be accommodated. However, wheels would bind against the upright part of the plate, and mud and stones would accumulate. On the Little Eaton Gangway in 1799, where Outram used passing loops on the single track, moveable plates were provided, called "pointers", which became shortened to "points". [Vaughan, A., (1997) "Railwaymen, Politics and Money," London: John Murray]

Edge rail

From the late 18th century, iron "edge rails" began to appear. The British civil engineer William Jessop designed smooth iron edge rails, which were used in conjunction with flanged iron wheels, introducing them on a route between Loughborough and Nanpantan, Leicestershire, as an adjunct to the Charnwood Forest Canal, in 1793-4. In 1803, Jessop opened the Surrey Iron Railway in south London, arguably the world's first horse-drawn public railway. [cite web| url=http://www.stephensonloco.fsbusiness.co.uk/surreyiron.htm| title=Surrey Iron Railway 200th - 26th July 2003| publisher=Stephenson Locomotive Society| work=Early Railways| accessdate=2007-09-19| ] Being of cast iron these rails were short, around three feet long, of a "fish-bellied" design. They had a foot at each end by means of which they were fastened to stone blocks in the ground.

Wrought iron and steel

Cast iron is a brittle material and the short lengths meant that they soon became uneven. However, developments in the process of hot rolling iron meant that longer length rails could be produced. In 1805, the first wrought iron rails were produced at Bedlington Ironworks near Durham. The first steel rails were produced by Robert Forester Mushet and laid at Derby station in 1857 Marshall, John. "The Guiness Book of Rail Facts & Feats" (1979) ISBN 0 900424 56 7] . Modern railways still use steel rails, but they are typically welded together to form lengths of "continuous welded rail"; these remove the additional wear and tear on rolling stock caused by the tiny differences in rail surface height at the joint between adjacent rail sections.

Motive power

Steam locomotives

The first locomotive to haul a train of wagons on rails was designed by Cornish engineer Richard Trevithick and was demonstrated in 1804 on a plateway at Merthyr Tydfil, South Wales. Chartres, Professor J.: 'Richard Trevithick' in: Cannon, John (Ed.): "Oxford Companion to British History", p. 932] Although the locomotive successfully hauled the train, the rail design was not a success, partly because the locomotive's weight broke a number of the brittle cast-iron plates. Despite this setback, another area of South Wales pioneered rail operations when, in 1806, a horse-drawn railway was built between Swansea and Mumbles: the Swansea–Mumbles railway started carrying fare-paying passengers in 1807 – the first in the world to do so. [cite web| url=http://www.bbc.co.uk/wales/southwest/sites/swansea/pages/mumbles_trainanniv.shtml| title=Early Days of Mumbles Railway| date=2007-02-15| publisher=BBC| accessdate=2007-09-19| ]

In 1811 John Blenkinsop designed the first successful and practical railway locomotive. [cite web| url=http://www.britannica.com/eb/article-9001800| title=John Blenkinsop| publisher=Encyclopedia Brittanica| accessdate=2007-09-10| ] He patented a system of moving coals by a rack railway worked by a steam locomotive (patent no. 3431), and a line was built connecting the Middleton Colliery to Leeds. The locomotive ("The Salamanca") was built in 1812 by Matthew Murray of Fenton, Murray and Wood. [cite book |title=The Pictorial Encyclopedia of Railways |author=Hamilton Ellis |publisher=The Hamlyn Publishing Group |year=1968 |pages=pp.20] The Middleton Railway was the first railway to successfully use steam locomotives on a commercial basis. It was also the first railway in Great Britain to be built under the terms laid out in an Act of Parliament. Blenkinsop's engine had double-acting cylinders and, unlike the Trevithick pattern, no flywheel. Due to previous experience with broken rails, the locomotive was made very light in weight and this brought concerns about insufficient adhesion; so instead of driving the wheels directly, the cylinders drove a cogwheel through spur gears, the cogwheel providing traction by engaging with a rack cast into the side of the rail.

In Scotland, the Kilmarnock and Troon Railway was the first railway constructed, and was authorised by Act of Parliament in 1808.Lewin, Page 5] Awdry, Page 84] Robertson] The civil engineer leading the project was William Jessop, and its 1811 construction meant that it was the first railway in Scotland to use a steam locomotive, while it was the only line in Scotland for 14 years.Thomas] Its representation appeared in the Coat of Arms of the Burgh of Troon. The line was intended to carry coal for the Duke of Portland; and ran services between Kilmarnock and Troon Harbour. The line began life as a 9.5 mile (16 km), double track 4 ft 0 in (1,219 mm) gauge, horse-drawn waggonway. It was built using cast iron plate rails with an inner flange. A George Stephenson-built locomotive, his second one from Killingworth Colliery, was tried on the main line in 1817, but the weight of the engine broke the cast iron plate rails. It worked better when wooden rails were used, and the locomotive remained in use until 1848.

The Stockton and Darlington Railway opened in northern England in 1825 [cite web| url=http://homepage.ntlworld.com/johnmoore/1825/sept_27.htm| title=September 27th 1825 - Opening of the Stockton and Darlington Railway| work=The Stockton and Darlington Railway| accessdate=2007-09-19| ] to be followed five years later by the Liverpool and Manchester Railway, [cite web| url=http://www.spartacus.schoolnet.co.uk/RAliverpool.htm| title=Liverpool and Manchester| accessdate=2007-09-19| ] considered to be the world's first "Inter City" line. The rail gauge (the distance between the two rails of the track) was used for the early wagonways, and had been adopted for the Stockton and Darlington Railway. The RailGauge|ussg width became known as the international "standard gauge", used by about 60 percent of the world's railways. The Liverpool and Manchester Railway, on the other hand, proved the viability of rail transport when, after organising the Rainhill Trials of 1829, Stephenson's "Rocket" successfully hauled a load of 13 tons at an average speed of 12 miles per hour. The company took the step of working its trains from its opening entirely by steam traction. Railways then soon spread throughout the United Kingdom and the world, and became the dominant means of land transport for nearly a century, until the invention of aircraft and automobiles, which prompted a gradual decline in railways.

The first railroad in the United States may have been a gravity railroad in Lewiston, New York in 1764. The 1810 Leiper Railroad in Pennsylvania was intended as the first permanent railroad, [cite web| url=http://www.seas.upenn.edu/~morlok/morlokpage/transp_data.html| title=First permanent railroad in the U.S. and its connection to the University of Pennsylvania| author=Morlok, Edward K.| date=2005-01-11| accessdate=2007-09-19| ] and the 1826 Granite Railway in Massachusetts was the first commercial railroad to evolve through continuous operations into a common carrier. The Baltimore and Ohio, opened in 1830, was the first to evolve into a major system. In 1867, the first elevated railroad was built in New York. In 1869, the symbolically important transcontinental railroad was completed in the United States with the driving of a golden spike at Promontory, Utah. [cite book| title=Nothing Like It In The World; The men who built the Transcontinental Railroad 1863-1869| author=Ambrose, Stephen E.| year=2000| publisher=Simon & Schuster| id=ISBN 0-684-84609-8] The development of the railroad in the United States helped reduce transportation time and cost, which allowed migration towards the west. Railroads increased the accessibility of goods to consumers, thus allowing individuals and capital to flow westward. Railroads created national markets characterized by the 'law of one price' by lowering difference in price charged for commodity between suppliers and demanders. Railroads increased social savings, and were the largest contributors of any innovation before 1900.

The South American experience regarding railways was first achieved in 1854, when a line was laid between the Chilean towns of Caldera and Copiapo. However, the first concerted trans-Andine attempt between Argentina and Chile did not occur until the 1870s, due to the financial risks involved in such a project. It was not until 1887 that the Argentinians began to construct their part of the enterprise, with the Chileans beginning construction in 1889, though by 1893, work had ceased due to financial constraints. In 1896, the Transandine Railway Company was created in London to purchase the existing railways and construct a continuous line between Argentina and Chile that would improve transport and communication links in South America. This was finally completed in 1908, when the Argentine and Chilean stretches of track were joined.

Dieselisation

Dieselisation was the replacement of the steam locomotive with the diesel-electric locomotive (often referred to as a "diesel locomotive"), a process which began in the 1930s and is now substantially complete worldwide.

Dieselisation took place largely because of the reduction in operating costs it allowed. Steam locomotives require large pools of labour to clean, load, maintain and run. They also require extensive service, coaling and watering facilities. Diesel locomotives require significantly less time and labour to operate and maintain.

After World War II, dramatically increased labour costs in the Western World made steam an increasingly costly form of motive power. At the same time, the war had forced improvements in internal combustion engine technology that made diesel locomotives cheaper and more powerful. The post war world also re-aligned the business and financial markets, as did world geo-politics as in the Cold War (1947-1953).

Electrification

Robert Davidson started to experiment with an electrical railway car in Scotland in 1838. By 1839 he had completed and presented a 4.8 m long carriage that weighed six tons, including batteries. It reached a maximum speed of 6.4 kilometres per hour.

Traill built a hydro-electric generating station at Walkmill Falls, Bushmills for the Giant's Causeway tramway installing water turbines to produce the electrical power for his line. Because of legal problems over water rights, erection of the Bushmills turbines was delayed and when the first section of the tramway, from Portrush to Bushmills, was opened on 29 January 1883 the timetabled passenger traffic was handled by steam tram engines which were in any case necessary on the town section in Portrush where it was impossible to provide electric power since this was originally fed to the trains via an elevated third rail which ran alongside the line. The ceremonial opening, using electric traction, took place on 28 September 1883 although a full scheduled electric service did not begin until 5 November of that year.

Magnus Volk opened his electric railway in Brighton in 1883.

The use of overhead wires conducting electricity, invented by Granville T. Woods in 1888, among several other improvements, led to the development of electrified railways, the first of which in the United States was operated at Coney Island in 1892. Richmond, Virginia had the first successful electrically-powered trolley system in the United States. Designed by electric power pioneer Frank J. Sprague, the trolley system opened its first line in January, 1888. Richmond's hills, long a transportation obstacle, were considered an ideal proving ground. The new technology soon replaced horse-powered streetcars.

Sweden got the perhaps first fully electrified developed railway that efficiently transported commuters as well as goods, in 1895. At the time it ran from close to central Stockholm to Rimbo, located in the countryside Roslagen. It is still in use to commuters today but runs only about a third of its biggest extent, much due to it not using the standard gauge but 3ft (891mm).

In the USSR the phenomenon of children's railways was developed in the 1930s (the world's first one was opened on 24 July 1935). Fully operated by children, they were extracurricular educational institutions, where teenagers learned railway professions. A lot of them are functioning in post-Soviet states and Eastern European countries.

Many countries since the 1960s have adopted high-speed railways. On 3 April 2007, the French TGV set a new train speed record. The train, with a modified engine and wheels, reached 574.8 km/h (357.2 mph). The record attempt took place on the new LGV Est line between Paris and Strasbourg using a specially equipped TGV Duplex train. The overhead lines had also been modified for the attempt to carry 31,000 V rather than the line's normal 25,000 V. [cite news| url=http://www.cnn.com/2007/WORLD/europe/04/03/TGVspeedrecord.ap/index.html| title=French train breaks speed record| date=2007-04-04| accessdate=2007-04-03| author=Associated Press| publisher=CNN| ] [cite news| url=http://www.bloomberg.com/apps/news?pid=20601085&sid=aW23Aw20niIo&refer=europe| title=French TGV Sets Record, Reaching 357 Miles an Hour (Update2)| author=Fouquet, Helene and Viscousi, Gregory| publisher=Bloomberg| date=2007-04-03| accessdate=2007-09-19| ] On 24 August 2005, the Qingzang railway became the highest railway line in the world, when track was laid through the Tanggula Mountain Pass at m to ft|5072 above sea level in the Tanggula Mountains, Tibet. [cite news| url=http://news.xinhuanet.com/english/2005-08/24/content_3397297.htm| title=New height of world's railway born in Tibet| publisher=Xinhua| date=2005-08-24| accessdate=2007-09-11| ]

Operations

A railway can be broken down into two major components. Firstly, there are the items which "move", also referred to as the rolling stock, which include locomotives, passenger carrying vehicles (or coaches), freight carrying vehicles (or goods wagons). Secondly are the "fixed" components, usually referred to as the railway's infrastructure, including the permanent way and ancillary buildings that are necessary for a railway to function.

Rolling stock

A locomotive is the vehicle that provides the motive power for a train. A locomotive has no payload capacity of its own, and its sole purpose is to move the train along the tracks. Traditionally, locomotives pull trains from the front.

A railroad car is a vehicle used for the haulage of either passengers or freight. Most cars carry a "revenue" load, although "non-revenue" cars exist for the railroad's own use, such as for maintenance-of-way purposes.

Signalling

Railway signalling is a system used to control railway traffic safely to prevent trains from colliding. Being guided by fixed rails, trains are uniquely susceptible to collision since they frequently operate at speeds that do not enable them to stop quickly or, in some cases, within the driver's sighting distance.

Most forms of train control involve movement authority being passed from those responsible for each section of a rail network (e.g., a signalman or stationmaster) to the train crew. The set of rules and the physical equipment used to accomplish this control determine what is known as the "method of working" (UK), "method of operation" (US) or "safeworking" (Aus.). Not all methods require the use of signals, and some systems are specific to single track railways. The signalling process is traditionally carried out in a signal box (or "interlocking tower" (US)), a small building that houses the lever frame required for the signalman to operate switches and signal equipment. These are placed at various intervals along the route of a railway, controlling specified sections of track. More recent technological developments have made such operational doctrine superfluous, with the centralization of signalling operations to regional control rooms. This has been facilitated by the increased use of computers, allowing vast sections of track to be monitored from a single location.

Right of way

Railway tracks are laid upon land owned or leased by the railway. Owing to the requirements for large radius turns and modest grades, rails will often be laid in circuitous routes. Public carrier railways are typically granted limited rights of eminent domain (UK:compulsory purchase). In many cases in the 19th century, railways were given additional incentives in the form of grants of public land. Route length and grade requirements can be reduced by the use of alternating earthen cut and fill, bridges, and tunnels, all of which can greatly increase the capital expenditures required to develop a right of way, while significantly reducing operating costs and allowing higher speeds on longer radius curves. In densely urbanized areas such as Manhattan, railways are sometimes laid out in tunnels to minimize the effects on existing properties (see condemnation).

Safety and railway disasters

Trains can travel at very high speed; however, they are heavy, are unable to deviate from the track and require a great distance to stop. Although rail transport is considered one of the safest forms of travel, there are many possibilities for accidents to take place. These can vary from the minor derailment (jumping the track), a head-on collision with another train and collision with an automobile or other vehicle at a level crossing/grade crossing. Level crossing collisions are relatively common in the United States where there are several thousand each year killing about 500 people (the comparable figures in the United Kingdom are 30 collisions and 12 casualties). For information regarding major accidents, see List of rail accidents. The most important safety measures are railway signalling and gates at level/grade crossings. Train whistles warn of the presence of a train, while trackside signals maintain the distances between trains. In the United Kingdom, vandalism or negligence is thought responsible for about half of rail accidents.Fact|date=June 2007 Railway lines are zoned or divided into blocks guarded by combinations of block signals, operating rules, and automatic-control devices so that one train, at most, may be in a block at any time.

Historically, when a railway wished to construct a rail line which crossed an existing railway, an interlocking tower had to be constructed and manned. It would be equipped with semaphore signals as well as derails controlled by rods and linkages. In this way a major accident could be avoided by signalling or derailling.cite web
last =
first =
authorlink =
coauthors =
title = Welcome to Saskrailmuseum.org
work =GRAND TRUNK PACIFIC RAILWAY BUILDINGS
publisher =
date = September 11, 2008
url = http://www.saskrailmuseum.org/
format =
doi =
accessdate =2008-10-03
]

Compared with road travel, railways remain safe. Annual death rates on roads are over 40,000 in the United States, about 3,000 in the United Kingdom and 900 in Australia, compared with 1,000 rail-related fatalities in the United States,under 20 in the UK and 10 in Australia. [cite web| url=http://hazmat.dot.gov/riskmgmt/riskcompare.htm| title=A Comparison of Risk: Accidental Deaths - United States - 1999-2003| author=Office of Hazardous Materials Safety| publisher=U.S. Department of Transportation| accessdate=2007-09-10| ] [cite web| url=http://www.rail-reg.gov.uk/| title=Office of Rail Regulation| publisher=U.K. Health & Safety Executive| accessdate=2007-09-10| ] (These figures do not account for differences in passenger-miles traveled by mode; see e.g. Transportation safety in the United States.

Trackage

A typical railway/railroad track consists of two parallel steel (or in older networks, iron) rails, generally anchored perpendicular to beams, termed sleepers or ties, of timber, concrete, or steel to maintain a consistent distance apart, or gauge. The rails and perpendicular beams are usually then placed on a foundation made of concrete or compressed earth and gravel in a bed of ballast to prevent the track from buckling (bending out of its original configuration) as the ground settles over time under the weight of the vehicles passing above. The vehicles traveling on the rails are arranged in a train; a series of individual powered or unpowered linked vehicles, displaying markers. These vehicles (referred to, in general, as "cars", "carriages" or "wagons") move with much less friction than do vehicles riding on rubber tires on a paved road, and the locomotive that pulls the train tends to use energy far more efficiently as a result. Fact|date=March 2007

Trackage, consisting of sleepers/ties and rails, may be prefabricated or assembled in place. Rails may be composed of segments welded or bolted, and may be of a length comparable to that of a railcar or two or may be many hundreds of feet long.

The surface of the ballast is sloped around curves to reduce lateral forces. This is called superelevation or cant. This reduces the forces tending to displace the track and makes for a more comfortable ride for standing livestock and standing or seated passengers. This will be effective at a limited range of speeds, however.

Track components

Railways are highly complex feats of engineering, with many hours of planning and forethought required for a successful outcome. The first component of a railway is the route, which is planned to provide the least resistance in terms of gradient and engineering works. As such, the track bed is heavily engineered to provide, where possible, a level surface. As such, embankments are constructed to support the track and to provide a compromise in terms of the route's average elevation. With this in mind, sundry structures such as bridges and viaducts are constructed in an attempt to maintain the railway's elevation, and gradients are kept within manageable constraints. Where such structures are not always justified, such as in hilly terrain where routes may require long detours to avoid such features, a cutting or tunnel is dug or bored through the obstacle. Once the sundry engineering works are completed, a bed of stone (ballast) is laid over the compacted track bed to enhance drainage around the ties and evenly distribute pressure over a wider area, locking the track-work in place. Crushed stone is firmly tamped to prevent further settling and to lock the stones. Minor water courses are channeled through pipes (culverts) before the grade is raised

The base of the trackage consists of treated wood, concrete or steel "ties", also known as "sleepers". These ensure the proper distance between the rails (known as "gauge"). Traditional US practice with wood sleepers is to anchor the rail structure to the road bed through the use of baseplates. These are attached to the top of the ties to provide a secure housing for the flat bottomed rails. After placement of the rail atop the plate, spikes are driven through holes in the plate and into the tie where they are held by friction. The top of the spike has a head that clamps the rail. As an alternative, lag bolts can be used to retain the clamps, which is preferred since screws are less likely to loosen. Traditional practice in the UK was to screw cast iron 'chairs' to wooden sleepers. These chairs loosely hold bullhead rail which is then secured by a wood or steel 'key' wedged between the side of the rail and the chair. With concrete or steel sleepers fixings are built into the sleeper to which flat bottom rail is attached with sprung steel clips.

The space between and surrounding the ties is filled with additional ballast to stabilize the rail assembly.

Points (Turnouts or Switches)

Points (UK) or switches (US), technically known as turnouts, are the means of directing a train onto a diverging section of track, for example, a siding, a branch line, or a parallel running line. Laid similar to normal track, a point typically consists of a frog (common crossing), check rails and two switch rails. The switch rails may be moved left or right, under the control of the signalling system, to determine which path the train will follow.

Maintenance

Spikes in wooden ties can loosen over time, while split and rotten ties may be individually replaced with a concrete substitute. Should the rails settle due to soil subsidence, they can be lifted by specialized machinery and additional ballast tamped down to form a level bed. Periodically, ballast must be removed and replaced with clean ballast to ensure adequate drainage, especially if wooden ties are used. Culverts and other passages for water must be kept clear lest water is impounded by the trackbed, causing landslips. Where trackbeds are placed along rivers, additional protection is usually placed to prevent erosion during times of high water, while bridges are another important item requiring inspection and maintenance.

Terminology

In the United Kingdom and most other Commonwealth of Nations countries, the term "railway" is used in preference to the United States term, "railroad." In Canadian speech, "railway" and "railroad" are interchangeable, although in law "railway" is the usual term. "Railroad" was used in the United Kingdom concurrently with "railway" until the 1850s when "railway" became the established term. Several American companies have "railway" in their names instead of "railroad", the BNSF Railway being the pre-eminent modern example.

In the United Kingdom, the term "railway" often refers to the whole organization of tracks, trains, stations, signalling, timetables and the operating companies that collectively make up a coordinated railway system, while "permanent way" or "p/way" refers to the tracks alone; however this terminology is generally not commonplace outside of the railway industry or those who take a keen interest in it.

Rapid transit systems (subways, metros, elevated lines, and undergrounds) and trolley lines are all specialized railways.

Rail transport by country

Of 236 countries and dependencies, 143 have rail transport (including several with very little), of which about 90 have passenger services.Fact|date=September 2008

See also

* List of rail transport topics

* Economy of Earth (Transportation section)
* High-speed rail
* Hillclimbing (railway)
** Rack railway (Cog railway or Rack and pinion railway)
** Funicular
** Gravity railroad
** Spiral (railway)
** Zig Zag (railway)
* Industrial railway
* Intermodal freight transport
* Intermodal passenger transport
* Land speed record for railed vehicles
* List of heritage railways
* List of named passenger trains
* List of railway companies
* List of railway companies in Switzerland
* List of suburban and commuter rail systems
* Maglev train
* Plateway
* Private railroad
* Private transport
* Public transport
* Rail adhesion
* Railcar (self propelled transport)
* Rail gauge
* Rail Inspection
* Rail tracks
* Rail transport in fiction
* Rail transport modelling
* Railroad ecology
* Railroad police
* Railroad-related periodicals
* Railway car
* Railway electrification system
* Railway ferry
* Railway Mail Service
* Railway signal
* Railway signalling
* Rapid transit
* List of people associated with rail transport

Footnotes

References

* Cannon, John (Ed.): "Oxford Companion to British History" (Oxford: Oxford University Press, 2002) ISBN 0198608721

Further reading

* John H. Armstrong. "Railroad: What It Is, What It Does" 4th Edition (1998)
* Rainer Fremdling, "Railways and German Economic Growth: A Leading Sector Analysis with a Comparison to the United States and Great Britain," "The Journal of Economic History", Vol. 37, No. 3. (Sep., 1977), pp. 583-604.
* Leland H. Jenks, "Railroads as an Economic Force in American Development," "The Journal of Economic History", Vol. 4, No. 1 (May, 1944), 1-20.
* Lewis, M. J. T., [http://www.sciencenews.gr/docs/diolkos.pdf "Railways in the Greek and Roman world"] , in Guy, A. / Rees, J. (eds), "Early Railways. A Selection of Papers from the First International Early Railways Conference" (2001), pp. 8–19 (10-15)
* O . S. Nock, ed. "Encyclopedia of Railways" (London, 1977), worldwide coverage, heavily illustrated
* Frederick Smeeton Williams, Our Iron Roads: Their History, Construction and Social Influences (1852) (available through [http://books.google.com/books?id=IHkPnlxTPL8C google books] ).
* Patrick O’Brien. "Railways and the Economic Development of Western Europe, 1830-1914" (1983)
* Jack Simmons and Gordon Biddle, (editors). "The Oxford Companion to British Railway History: From 1603 to the 1990s" (2nd ed 1999)
*
* John Stover, "American Railroads" (2nd ed 1997)
*James W. Ely Jr "Railroads & American Law" (2001) University Press of Kansas


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Rail transport in Christchurch — Rail transport in Christchurch, the largest city in the Canterbury region of New Zealand s South Island, consists of two main trunk railway lines intersecting in the suburb of Addington, carrying mainly long haul freight traffic but also a couple …   Wikipedia

  • Rail transport in Australia — is to a large extent state based. The Australian rail network consists of a total of 33,819 km of track of three major gauges, of which 2,540 km is electrified. Fact|date=March 2008The majority of the Australian railway network infrastructure is… …   Wikipedia

  • Rail transport in Japan — is a major means of passenger transport, especially for mass and high speed travel between major cities and for commuter transport in metropolitan areas.OverviewSix Japan Railways Group (JR) companies, state owned until 1987, provide passenger… …   Wikipedia

  • Rail transport in Singapore — exists in three main types, namely an international rail connection operated by Malaysian company Keretapi Tanah Melayu, a rapid transit system collectively known as the Mass Rapid Transit (MRT) system operated by the two biggest public transport …   Wikipedia

  • Rail transport in Central America — consists of several isolated railroad lines with freight or passenger service. The most famous one is Panama Canal Railway Company, the oldest transcontinental railroad in the world, connecting Panama City with Colón since 1855. Other railroads… …   Wikipedia

  • Rail transport in South Africa — is arguably the most important piece of the country s transportation infrastructure. All major cities are connected by rail, and South Africa s railway system is the most highly developed in Africa. [… …   Wikipedia

  • Rail transport in Queensland — has a long history, with the first line opening in 1865. Today it is the second largest narrow gauge railway network in the world.The first line was surveyed while the colony was still part of New South Wales, but the colony of Queensland had… …   Wikipedia

  • Rail transport in Saudi Arabia — is managed by Saudi Railway Organization. It provides freight service on three main lines, 1018 km total, which connect Riyadh with Persian Gulf port of Dammam. [http://www.saudirailways.org/english/technical information.htm] Their passenger… …   Wikipedia

  • Rail transport in Tasmania — consists of a network of narrow gauge track of RailGauge|42 reaching virtually all cities and major towns in the island state of Tasmania, Australia. Today, rail services are focussed primarily on bulk freight, with no commercial passenger… …   Wikipedia

  • Rail transport in Oregon — Rail transport is an important element of the transportation network in the state of Oregon. Rail has existed in the state in some form since 1855 [ cite web url = http://www.columbiagorge.org/press releases.html title = Gorge Railroad History… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”