Formic acid fuel cell

Formic acid fuel cell

Direct-formic acid fuel cells or DFAFCs are a subcategory of proton exchange membrane fuel cells where, the fuel, formic acid, is not reformed, but fed directly to the fuel cell. Their applications include small, portable electronics such as phones and laptop computers.

Contents

Advantages

Similar to methanol, formic acid is a small organic molecule fed directly into the fuel cell, removing the need for complicated catalytic reforming. Storage of formic acid is much easier and safer than that of hydrogen because it does not need to be done at high pressures and (or) low temperatures, as formic acid is a liquid at standard temperature and pressure. Formic acid does not cross over the polymer membrane, so its efficiency can be higher than that of methanol.

Reactions

DFAFCs convert formic acid and oxygen into carbon dioxide and water to produce energy. Formic acid oxiation occurs at the anode on a catalyst layer. Carbon dioxide is formed and protons (H+) are passed through the polymer membrane to react with oxygen on a catalyst layer located at the cathode. Electrons are passed through an external circuit from anode to cathode to provide power to an external device.

Anode: HCOOH → CO2 + 2 H+ + 2 e-

Cathode: 1/2 O2 + 2 H+ + 2 e- → H2O

Net reaction: HCOOH + 1/2 O2 → CO2 + H2O

History

During previous investigations, researchers dismissed formic acid as a practical fuel because of the high overpotential shown by experiments: this meant the reaction appeared to be too difficult to be practical. However, in 2005- 2006, other researchers (in particular Richard Masel's group at the University of Illinois at Urbana-Champaign) found that the reason for the low performance was the usage of platinum as a catalyst, as it is common in most other types of fuel cells: using palladium instead, they claim to have obtained better performance than equivalent direct methanol fuel cells.[1] Tekion holds the exclusive license to formic-acid fuel cell technology from the University of Illinois at Urbana-Champaign. The company now is focusing on developing a miniature hybrid battery/fuel-cell unit called the Formira Power Pack and hopes to introduce the packs in the fourth quarter of 2007. The Power Packs rely on the fuel cell, instead of a conventional electrical source like a wall outlet, to recharge the batteries. When the fuel is exhausted, users simply replace the empty fuel cartridge with a fresh one. Because of the high power density of the fuel cell, it should provide about double the time between charges. This technology is expected to only cost about 10-15% more than traditional batteries.[2]

See also

References

  1. ^ S. Ha, R. Larsen, and R. I. Masel, "Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells," Journal of Power Sources, 144, 28-34 (2005)
  2. ^ Formic acid fuel cell gets boost | Chemical Processing

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Formic acid fuel cell — Die Ameisensäure Brennstoffzelle (FAFC von englisch: Formic acid fuel cell) ist eine Brennstoffzelle, bei der Ameisensäure als Brennstoff benutzt wird. Als Elektrolyt wird, wie bei der DMFC, eine protonenleitende Membran (z.B. Nafion) verwendet.… …   Deutsch Wikipedia

  • Fuel cell — For other uses, see Fuel cell (disambiguation). Demonstration model of a direct methanol fuel cell. The actual fuel cell stack is the layered cube shape in the center of the image A fuel cell is a device that converts the chemical energy from a… …   Wikipedia

  • Molten carbonate fuel cell — Scheme of a molten carbonate fuel cell Molten carbonate fuel cells (MCFCs) are high temperature fuel cells, that operate at temperatures of 600°C and above. Molten carbonate fuel cells (MCFCs) are currently being developed for natural gas, biogas …   Wikipedia

  • Protonic ceramic fuel cell — The Protonic ceramic fuel cell or PCFC is a fuel cell based on a ceramic electrolyte material that exhibits high protonic conductivity at elevated temperatures. PCFCs share the thermal and kinetic advantages of high temperature operation at 700… …   Wikipedia

  • Direct methanol fuel cell — Direct methanol fuel cells or DMFCs are a subcategory of proton exchange fuel cells in which methanol is used as the fuel. Their main advantage is the ease of transport of methanol, an energy dense yet reasonably stable liquid at all… …   Wikipedia

  • Electro-galvanic fuel cell — 3 electro galvanic fuel cells from a rebreather An electro galvanic fuel cell is an electrical device, one form of which is commonly used to measure the concentration of oxygen gas in scuba diving and medical equipment. A chemical reaction occurs …   Wikipedia

  • Direct-ethanol fuel cell — Direct ethanol fuel cells or DEFCs are a subcategory of Proton exchange fuel cells where the fuel, ethanol, is fed directly to the fuel cell. Contents 1 Advantages 2 Reaction 3 Issues 4 …   Wikipedia

  • Direct borohydride fuel cell — Direct borohydride fuel cells (DBFCs) are a subcategory of alkaline fuel cells which are directly fed by sodium borohydride or potassium borohydride as a fuel and either air/oxygen[1] or hydrogen peroxide[2] as the oxidant. DBFCs are relatively… …   Wikipedia

  • Metal hydride fuel cell — Metal hydride fuel cells are a subclass of alkaline fuel cells that are currently in the research and development phase. A notable feature is their ability to chemically bond and store hydrogen within the cell. This feature is shared with direct… …   Wikipedia

  • Direct carbon fuel cell — A Direct Carbon Fuel Cell (DCFC) is a fuel cell that uses a carbon rich material as a fuel. The cell produces energy by combining carbon and oxygen, which releases carbon dioxide as a by product. The total reaction of the cell is C + O2 → CO2.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”