List of integrals of trigonometric functions

List of integrals of trigonometric functions

The following is a list of integrals (antiderivative functions) of trigonometric functions. For integrals involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of Integral functions, see lists of integrals. See also trigonometric integral.

In all formulas the constant "a" is assumed to be nonzero, and "C" denotes the constant of integration.

Integrals containing only sine

: intsin ax;dx = -frac{1}{a}cos ax+C,!

: intsin^2 {ax};dx = frac{x}{2} - frac{1}{4a} sin 2ax +C= frac{x}{2} - frac{1}{2a} sin axcos ax +C!

: int xsin^2 {ax};dx = frac{x^2}{4} - frac{x}{4a} sin 2ax - frac{1}{8a^2} cos 2ax +C!

: int x^2sin^2 {ax};dx = frac{x^3}{6} - left( frac {x^2}{4a} - frac{1}{8a^3} ight) sin 2ax - frac{x}{4a^2} cos 2ax +C!

: intsin b_1xsin b_2x;dx = frac{sin [(b_1-b_2)x] }{2(b_1-b_2)}-frac{sin [(b_1+b_2)x] }{2(b_1+b_2)}+C qquadmbox{(for }|b_1| eq|b_2|mbox{)},!

: intsin^n {ax};dx = -frac{sin^{n-1} axcos ax}{na} + frac{n-1}{n}intsin^{n-2} ax;dx qquadmbox{(for }n>0mbox{)},!

: intfrac{dx}{sin ax} = frac{1}{a}ln left| anfrac{ax}{2} ight|+C

: intfrac{dx}{sin^n ax} = frac{cos ax}{a(1-n) sin^{n-1} ax}+frac{n-2}{n-1}intfrac{dx}{sin^{n-2}ax} qquadmbox{(for }n>1mbox{)},!

: int xsin ax;dx = frac{sin ax}{a^2}-frac{xcos ax}{a}+C,!

: int x^nsin ax;dx = -frac{x^n}{a}cos ax+frac{n}{a}int x^{n-1}cos ax;dx qquadmbox{(for }n>0mbox{)},!

: int_{frac{-a}{2^{frac{a}{2 x^2sin^2 {frac{npi x}{a;dx = frac{a^3(n^2pi^2-6)}{24n^2pi^2} qquadmbox{(for }n=2,4,6...mbox{)},!

: intfrac{sin ax}{x} dx = sum_{n=0}^infty (-1)^nfrac{(ax)^{2n+1{(2n+1)cdot (2n+1)!} +C,!

: intfrac{sin ax}{x^n} dx = -frac{sin ax}{(n-1)x^{n-1 + frac{a}{n-1}intfrac{cos ax}{x^{n-1 dx,!

: intfrac{dx}{1pmsin ax} = frac{1}{a} anleft(frac{ax}{2}mpfrac{pi}{4} ight)+C

: intfrac{x;dx}{1+sin ax} = frac{x}{a} anleft(frac{ax}{2} - frac{pi}{4} ight)+frac{2}{a^2}lnleft|cosleft(frac{ax}{2}-frac{pi}{4} ight) ight|+C

: intfrac{x;dx}{1-sin ax} = frac{x}{a}cotleft(frac{pi}{4} - frac{ax}{2} ight)+frac{2}{a^2}lnleft|sinleft(frac{pi}{4}-frac{ax}{2} ight) ight|+C

: intfrac{sin ax;dx}{1pmsin ax} = pm x+frac{1}{a} anleft(frac{pi}{4}mpfrac{ax}{2} ight)+C

Integrals containing only cosine

: intcos ax;dx = frac{1}{a}sin ax+C,!

: intcos^n ax;dx = frac{cos^{n-1} axsin ax}{na} + frac{n-1}{n}intcos^{n-2} ax;dx qquadmbox{(for }n>0mbox{)},!

: int xcos ax;dx = frac{cos ax}{a^2} + frac{xsin ax}{a}+C,!

: intcos^2 {ax};dx = frac{x}{2} + frac{1}{4a} sin 2ax +C = frac{x}{2} + frac{1}{2a} sin axcos ax +C!

: int x^2cos^2 {ax};dx = frac{x^3}{6} + left( frac {x^2}{4a} - frac{1}{8a^3} ight) sin 2ax + frac{x}{4a^2} cos 2ax +C!

: int x^ncos ax;dx = frac{x^nsin ax}{a} - frac{n}{a}int x^{n-1}sin ax;dx,!

: int_{frac{-a}{2^{frac{a}{2 x^2cos^2 {frac{npi x}{a;dx = frac{a^3(n^2pi^2-6)}{24n^2pi^2} qquadmbox{(for }n=1,3,5...mbox{)},!

: intfrac{cos ax}{x} dx = ln|ax|+sum_{k=1}^infty (-1)^kfrac{(ax)^{2k{2kcdot(2k)!}+C,!

: intfrac{cos ax}{x^n} dx = -frac{cos ax}{(n-1)x^{n-1-frac{a}{n-1}intfrac{sin ax}{x^{n-1 dx qquadmbox{(for }n eq 1mbox{)},!

: intfrac{dx}{cos ax} = frac{1}{a}lnleft| anleft(frac{ax}{2}+frac{pi}{4} ight) ight|+C

: intfrac{dx}{cos^n ax} = frac{sin ax}{a(n-1) cos^{n-1} ax} + frac{n-2}{n-1}intfrac{dx}{cos^{n-2} ax} qquadmbox{(for }n>1mbox{)},!

: intfrac{dx}{1+cos ax} = frac{1}{a} anfrac{ax}{2}+C,!

: intfrac{dx}{1-cos ax} = -frac{1}{a}cotfrac{ax}{2}+C,!

: intfrac{x;dx}{1+cos ax} = frac{x}{a} anfrac{ax}{2} + frac{2}{a^2}lnleft|cosfrac{ax}{2} ight|+C

: intfrac{x;dx}{1-cos ax} = -frac{x}{a}cotfrac{ax}{2}+frac{2}{a^2}lnleft|sinfrac{ax}{2} ight|+C

: intfrac{cos ax;dx}{1+cos ax} = x - frac{1}{a} anfrac{ax}{2}+C,!

: intfrac{cos ax;dx}{1-cos ax} = -x-frac{1}{a}cotfrac{ax}{2}+C,!

: intcos a_1xcos a_2x;dx = frac{sin(a_1-a_2)x}{2(a_1-a_2)}+frac{sin(a_1+a_2)x}{2(a_1+a_2)}+C qquadmbox{(for }|a_1| eq|a_2|mbox{)},!

Integrals containing only tangent

: int an ax;dx = -frac{1}{a}ln|cos ax|+C = frac{1}{a}ln|sec ax|+C,!

: int an^n ax;dx = frac{1}{a(n-1)} an^{n-1} ax-int an^{n-2} ax;dx qquadmbox{(for }n eq 1mbox{)},!

: intfrac{dx}{q an ax + p} = frac{1}{p^2 + q^2}(px + frac{q}{a}ln|qsin ax + pcos ax|)+C qquadmbox{(for }p^2 + q^2 eq 0mbox{)},!

: intfrac{dx}{ an ax} = frac{1}{a}ln|sin ax|+C,!

: intfrac{dx}{ an ax + 1} = frac{x}{2} + frac{1}{2a}ln|sin ax + cos ax|+C,!

: intfrac{dx}{ an ax - 1} = -frac{x}{2} + frac{1}{2a}ln|sin ax - cos ax|+C,!

: intfrac{ an ax;dx}{ an ax + 1} = frac{x}{2} - frac{1}{2a}ln|sin ax + cos ax|+C,!

: intfrac{ an ax;dx}{ an ax - 1} = frac{x}{2} + frac{1}{2a}ln|sin ax - cos ax|+C,!

Integrals containing only secant

:int sec{ax} , dx = frac{1}{a}ln{left| sec{ax} + an{ax} ight+C

:int sec^n{ax} , dx = frac{sec^{n-1}{ax} sin {ax{a(n-1)} ,+, frac{n-2}{n-1}int sec^{n-2}{ax} , dx qquad mbox{ (for }n e 1mbox{)},!

:int sec^n{x} , dx = frac{sec^{n-2}{x} an{x{n-1} ,+, frac{n-2}{n-1}int sec^{n-2}{x},dx [Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008]

:int frac{dx}{sec{x} + 1} = x - an{frac{x}{2+C

Integrals containing only cosecant

:int csc{ax} , dx = -frac{1}{a}ln{left| csc{ax} + cot{ax} ight+C

:int csc^2{x} , dx = -cot{x}+C

:int csc^n{ax} , dx = -frac{csc^{n-1}{ax} cos{ax{a(n-1)} ,+, frac{n-2}{n-1}int csc^{n-2}{ax} , dx qquad mbox{ (for }n e 1mbox{)},!

Integrals containing only cotangent

:intcot ax;dx = frac{1}{a}ln|sin ax|+C,!

: intcot^n ax;dx = -frac{1}{a(n-1)}cot^{n-1} ax - intcot^{n-2} ax;dx qquadmbox{(for }n eq 1mbox{)},!

: intfrac{dx}{1 + cot ax} = intfrac{ an ax;dx}{ an ax+1},!

: intfrac{dx}{1 - cot ax} = intfrac{ an ax;dx}{ an ax-1},!

Integrals containing both sine and cosine

: intfrac{dx}{cos axpmsin ax} = frac{1}{asqrt{2lnleft| anleft(frac{ax}{2}pmfrac{pi}{8} ight) ight|+C

: intfrac{dx}{(cos axpmsin ax)^2} = frac{1}{2a} anleft(axmpfrac{pi}{4} ight)+C

: intfrac{dx}{(cos x + sin x)^n} = frac{1}{n-1}left(frac{sin x - cos x}{(cos x + sin x)^{n - 1 - 2(n - 2)intfrac{dx}{(cos x + sin x)^{n-2 ight)

: intfrac{cos ax;dx}{cos ax + sin ax} = frac{x}{2} + frac{1}{2a}lnleft|sin ax + cos ax ight|+C

: intfrac{cos ax;dx}{cos ax - sin ax} = frac{x}{2} - frac{1}{2a}lnleft|sin ax - cos ax ight|+C

: intfrac{sin ax;dx}{cos ax + sin ax} = frac{x}{2} - frac{1}{2a}lnleft|sin ax + cos ax ight|+C

: intfrac{sin ax;dx}{cos ax - sin ax} = -frac{x}{2} - frac{1}{2a}lnleft|sin ax - cos ax ight|+C

: intfrac{cos ax;dx}{sin ax(1+cos ax)} = -frac{1}{4a} an^2frac{ax}{2}+frac{1}{2a}lnleft| anfrac{ax}{2} ight|+C

: intfrac{cos ax;dx}{sin ax(1+-cos ax)} = -frac{1}{4a}cot^2frac{ax}{2}-frac{1}{2a}lnleft| anfrac{ax}{2} ight|+C

: intfrac{sin ax;dx}{cos ax(1+sin ax)} = frac{1}{4a}cot^2left(frac{ax}{2}+frac{pi}{4} ight)+frac{1}{2a}lnleft| anleft(frac{ax}{2}+frac{pi}{4} ight) ight|+C

: intfrac{sin ax;dx}{cos ax(1-sin ax)} = frac{1}{4a} an^2left(frac{ax}{2}+frac{pi}{4} ight)-frac{1}{2a}lnleft| anleft(frac{ax}{2}+frac{pi}{4} ight) ight|+C

: intsin axcos ax;dx = frac{1}{2a}sin^2 ax +c,!

: intsin a_1xcos a_2x;dx = -frac{cos(a_1+a_2)x}{2(a_1+a_2)}-frac{cos(a_1-a_2)x}{2(a_1-a_2)} +Cqquadmbox{(for }|a_1| eq|a_2|mbox{)},!

: intsin^n axcos ax;dx = frac{1}{a(n+1)}sin^{n+1} ax +Cqquadmbox{(for }n eq -1mbox{)},!

: intsin axcos^n ax;dx = -frac{1}{a(n+1)}cos^{n+1} ax +Cqquadmbox{(for }n eq -1mbox{)},!

: intsin^n axcos^m ax;dx = -frac{sin^{n-1} axcos^{m+1} ax}{a(n+m)}+frac{n-1}{n+m}intsin^{n-2} axcos^m ax;dx qquadmbox{(for }m,n>0mbox{)},!

: also: intsin^n axcos^m ax;dx = frac{sin^{n+1} axcos^{m-1} ax}{a(n+m)} + frac{m-1}{n+m}intsin^n axcos^{m-2} ax;dx qquadmbox{(for }m,n>0mbox{)},!

: intfrac{dx}{sin axcos ax} = frac{1}{a}lnleft| an ax ight|+C

: intfrac{dx}{sin axcos^n ax} = frac{1}{a(n-1)cos^{n-1} ax}+intfrac{dx}{sin axcos^{n-2} ax} qquadmbox{(for }n eq 1mbox{)},!

: intfrac{dx}{sin^n axcos ax} = -frac{1}{a(n-1)sin^{n-1} ax}+intfrac{dx}{sin^{n-2} axcos ax} qquadmbox{(for }n eq 1mbox{)},!

: intfrac{sin ax;dx}{cos^n ax} = frac{1}{a(n-1)cos^{n-1} ax} +Cqquadmbox{(for }n eq 1mbox{)},!

: intfrac{sin^2 ax;dx}{cos ax} = -frac{1}{a}sin ax+frac{1}{a}lnleft| anleft(frac{pi}{4}+frac{ax}{2} ight) ight|+C

: intfrac{sin^2 ax;dx}{cos^n ax} = frac{sin ax}{a(n-1)cos^{n-1}ax}-frac{1}{n-1}intfrac{dx}{cos^{n-2}ax} qquadmbox{(for }n eq 1mbox{)},!

: intfrac{sin^n ax;dx}{cos ax} = -frac{sin^{n-1} ax}{a(n-1)} + intfrac{sin^{n-2} ax;dx}{cos ax} qquadmbox{(for }n eq 1mbox{)},!

: intfrac{sin^n ax;dx}{cos^m ax} = frac{sin^{n+1} ax}{a(m-1)cos^{m-1} ax}-frac{n-m+2}{m-1}intfrac{sin^n ax;dx}{cos^{m-2} ax} qquadmbox{(for }m eq 1mbox{)},!

: also: intfrac{sin^n ax;dx}{cos^m ax} = -frac{sin^{n-1} ax}{a(n-m)cos^{m-1} ax}+frac{n-1}{n-m}intfrac{sin^{n-2} ax;dx}{cos^m ax} qquadmbox{(for }m eq nmbox{)},!

: also: intfrac{sin^n ax;dx}{cos^m ax} = frac{sin^{n-1} ax}{a(m-1)cos^{m-1} ax}-frac{n-1}{m-1}intfrac{sin^{n-2} ax;dx}{cos^{m-2} ax} qquadmbox{(for }m eq 1mbox{)},!

: intfrac{cos ax;dx}{sin^n ax} = -frac{1}{a(n-1)sin^{n-1} ax} +Cqquadmbox{(for }n eq 1mbox{)},!

: intfrac{cos^2 ax;dx}{sin ax} = frac{1}{a}left(cos ax+lnleft| anfrac{ax}{2} ight| ight) +C

: intfrac{cos^2 ax;dx}{sin^n ax} = -frac{1}{n-1}left(frac{cos ax}{asin^{n-1} ax)}+intfrac{dx}{sin^{n-2} ax} ight) qquadmbox{(for }n eq 1mbox{)}

: intfrac{cos^n ax;dx}{sin^m ax} = -frac{cos^{n+1} ax}{a(m-1)sin^{m-1} ax} - frac{n-m-2}{m-1}intfrac{cos^n ax;dx}{sin^{m-2} ax} qquadmbox{(for }m eq 1mbox{)},!

: also: intfrac{cos^n ax;dx}{sin^m ax} = frac{cos^{n-1} ax}{a(n-m)sin^{m-1} ax} + frac{n-1}{n-m}intfrac{cos^{n-2} ax;dx}{sin^m ax} qquadmbox{(for }m eq nmbox{)},!

: also: intfrac{cos^n ax;dx}{sin^m ax} = -frac{cos^{n-1} ax}{a(m-1)sin^{m-1} ax} - frac{n-1}{m-1}intfrac{cos^{n-2} ax;dx}{sin^{m-2} ax} qquadmbox{(for }m eq 1mbox{)},!

Integrals containing both sine and tangent

: int sin ax an ax;dx = frac{1}{a}(ln|sec ax + an ax| - sin ax)+C,!

: intfrac{ an^n ax;dx}{sin^2 ax} = frac{1}{a(n-1)} an^{n-1} (ax) +Cqquadmbox{(for }n eq 1mbox{)},!

Integrals containing both cosine and tangent

: intfrac{ an^n ax;dx}{cos^2 ax} = frac{1}{a(n+1)} an^{n+1} ax +Cqquadmbox{(for }n eq -1mbox{)},!

Integrals containing both sine and cotangent

: intfrac{cot^n ax;dx}{sin^2 ax} = frac{1}{a(n+1)}cot^{n+1} ax +Cqquadmbox{(for }n eq -1mbox{)},!

Integrals containing both cosine and cotangent

: intfrac{cot^n ax;dx}{cos^2 ax} = frac{1}{a(1-n)} an^{1-n} ax +Cqquadmbox{(for }n eq 1mbox{)},!

Integrals with symmetric limits

: int_-c^csin {x};dx = 0 !: int_-c^ccos {x};dx = 2int_0^ccos {x};dx = 2int_-c^0cos {x};dx = 2sin {c} !: int_-c^c an {x};dx = 0 !


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Trigonometric functions — Cosine redirects here. For the similarity measure, see Cosine similarity. Trigonometry History Usage Functions Generalized Inverse functions …   Wikipedia

  • List of integrals of inverse trigonometric functions — The following is a list of integrals (antiderivative formulas) for integrands that contain inverse trigonometric functions (also known as arc functions ). For a complete list of integral formulas, see lists of integrals.Note: There are three… …   Wikipedia

  • List of trigonometric identities — Cosines and sines around the unit circle …   Wikipedia

  • List of calculus topics — This is a list of calculus topics.Note: the ordering of topics in sections is a suggestion to students.Before calculus (precalculus)*Graph of a function *Linear function *Secant *Slope *Tangent *Concavity *Finite difference *Radian *Factorial… …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • Trigonometric integral — Si(x) (blue) and Ci(x) (green) plotted on the same plot. In mathematics, the trigonometric integrals are a family of integrals which involve trigonometric functions. A number of the basic trigonometric integrals are discussed at the list of… …   Wikipedia

  • List of integration and measure theory topics — This is a list of integration and measure theory topics, by Wikipedia page.Intuitive foundations*Length *Area *Volume *Probability *Moving averageRiemann integral*Riemann sum *Riemann Stieltjes integral *Bounded variation *Jordan contentImproper… …   Wikipedia

  • List of trigonometry topics — This is a list of trigonometry topics, by Wikipedia page.*Angle *Angle excess *Brahmagupta interpolation formula *Chebyshev polynomials *Conway triangle notation *De Moivre s formula *Dirichlet kernel *Euler s formula *Exact trigonometric… …   Wikipedia

  • List of basic trigonometry topics — For a more comprehensive list, see the List of trigonometry topics. Trigonometry is a branch of mathematics which deals with angles, triangles and trigonometric functions such as sine, cosine and tangent.The following outline is provided as an… …   Wikipedia

  • Inverse trigonometric functions — Trigonometry History Usage Functions Generalized Inverse functions Further reading …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”