- List of integrals of trigonometric functions
The following is a list of
integral s (antiderivative functions) oftrigonometric functions . For integrals involving both exponential and trigonometric functions, seeList of integrals of exponential functions . For a complete list of Integral functions, seelists of integrals . See alsotrigonometric integral .In all formulas the constant "a" is assumed to be nonzero, and "C" denotes the
constant of integration .Integrals containing only
sine : intsin ax;dx = -frac{1}{a}cos ax+C,!
: intsin^2 {ax};dx = frac{x}{2} - frac{1}{4a} sin 2ax +C= frac{x}{2} - frac{1}{2a} sin axcos ax +C!
: int xsin^2 {ax};dx = frac{x^2}{4} - frac{x}{4a} sin 2ax - frac{1}{8a^2} cos 2ax +C!
: int x^2sin^2 {ax};dx = frac{x^3}{6} - left( frac {x^2}{4a} - frac{1}{8a^3} ight) sin 2ax - frac{x}{4a^2} cos 2ax +C!
: intsin b_1xsin b_2x;dx = frac{sin [(b_1-b_2)x] }{2(b_1-b_2)}-frac{sin [(b_1+b_2)x] }{2(b_1+b_2)}+C qquadmbox{(for }|b_1| eq|b_2|mbox{)},!
: intsin^n {ax};dx = -frac{sin^{n-1} axcos ax}{na} + frac{n-1}{n}intsin^{n-2} ax;dx qquadmbox{(for }n>0mbox{)},!
: intfrac{dx}{sin ax} = frac{1}{a}ln left| anfrac{ax}{2} ight|+C
: intfrac{dx}{sin^n ax} = frac{cos ax}{a(1-n) sin^{n-1} ax}+frac{n-2}{n-1}intfrac{dx}{sin^{n-2}ax} qquadmbox{(for }n>1mbox{)},!
: int xsin ax;dx = frac{sin ax}{a^2}-frac{xcos ax}{a}+C,!
: int x^nsin ax;dx = -frac{x^n}{a}cos ax+frac{n}{a}int x^{n-1}cos ax;dx qquadmbox{(for }n>0mbox{)},!
: int_{frac{-a}{2^{frac{a}{2 x^2sin^2 {frac{npi x}{a;dx = frac{a^3(n^2pi^2-6)}{24n^2pi^2} qquadmbox{(for }n=2,4,6...mbox{)},!
: intfrac{sin ax}{x} dx = sum_{n=0}^infty (-1)^nfrac{(ax)^{2n+1{(2n+1)cdot (2n+1)!} +C,!
: intfrac{sin ax}{x^n} dx = -frac{sin ax}{(n-1)x^{n-1 + frac{a}{n-1}intfrac{cos ax}{x^{n-1 dx,!
: intfrac{dx}{1pmsin ax} = frac{1}{a} anleft(frac{ax}{2}mpfrac{pi}{4} ight)+C
: intfrac{x;dx}{1+sin ax} = frac{x}{a} anleft(frac{ax}{2} - frac{pi}{4} ight)+frac{2}{a^2}lnleft|cosleft(frac{ax}{2}-frac{pi}{4} ight) ight|+C
: intfrac{x;dx}{1-sin ax} = frac{x}{a}cotleft(frac{pi}{4} - frac{ax}{2} ight)+frac{2}{a^2}lnleft|sinleft(frac{pi}{4}-frac{ax}{2} ight) ight|+C
: intfrac{sin ax;dx}{1pmsin ax} = pm x+frac{1}{a} anleft(frac{pi}{4}mpfrac{ax}{2} ight)+C
Integrals containing only
cosine : intcos ax;dx = frac{1}{a}sin ax+C,!
: intcos^n ax;dx = frac{cos^{n-1} axsin ax}{na} + frac{n-1}{n}intcos^{n-2} ax;dx qquadmbox{(for }n>0mbox{)},!
: int xcos ax;dx = frac{cos ax}{a^2} + frac{xsin ax}{a}+C,!
: intcos^2 {ax};dx = frac{x}{2} + frac{1}{4a} sin 2ax +C = frac{x}{2} + frac{1}{2a} sin axcos ax +C!
: int x^2cos^2 {ax};dx = frac{x^3}{6} + left( frac {x^2}{4a} - frac{1}{8a^3} ight) sin 2ax + frac{x}{4a^2} cos 2ax +C!
: int x^ncos ax;dx = frac{x^nsin ax}{a} - frac{n}{a}int x^{n-1}sin ax;dx,!
: int_{frac{-a}{2^{frac{a}{2 x^2cos^2 {frac{npi x}{a;dx = frac{a^3(n^2pi^2-6)}{24n^2pi^2} qquadmbox{(for }n=1,3,5...mbox{)},!
: intfrac{cos ax}{x} dx = ln|ax|+sum_{k=1}^infty (-1)^kfrac{(ax)^{2k{2kcdot(2k)!}+C,!
: intfrac{cos ax}{x^n} dx = -frac{cos ax}{(n-1)x^{n-1-frac{a}{n-1}intfrac{sin ax}{x^{n-1 dx qquadmbox{(for }n eq 1mbox{)},!
: intfrac{dx}{cos ax} = frac{1}{a}lnleft| anleft(frac{ax}{2}+frac{pi}{4} ight) ight|+C
: intfrac{dx}{cos^n ax} = frac{sin ax}{a(n-1) cos^{n-1} ax} + frac{n-2}{n-1}intfrac{dx}{cos^{n-2} ax} qquadmbox{(for }n>1mbox{)},!
: intfrac{dx}{1+cos ax} = frac{1}{a} anfrac{ax}{2}+C,!
: intfrac{dx}{1-cos ax} = -frac{1}{a}cotfrac{ax}{2}+C,!
: intfrac{x;dx}{1+cos ax} = frac{x}{a} anfrac{ax}{2} + frac{2}{a^2}lnleft|cosfrac{ax}{2} ight|+C
: intfrac{x;dx}{1-cos ax} = -frac{x}{a}cotfrac{ax}{2}+frac{2}{a^2}lnleft|sinfrac{ax}{2} ight|+C
: intfrac{cos ax;dx}{1+cos ax} = x - frac{1}{a} anfrac{ax}{2}+C,!
: intfrac{cos ax;dx}{1-cos ax} = -x-frac{1}{a}cotfrac{ax}{2}+C,!
: intcos a_1xcos a_2x;dx = frac{sin(a_1-a_2)x}{2(a_1-a_2)}+frac{sin(a_1+a_2)x}{2(a_1+a_2)}+C qquadmbox{(for }|a_1| eq|a_2|mbox{)},!
Integrals containing only tangent
: int an ax;dx = -frac{1}{a}ln|cos ax|+C = frac{1}{a}ln|sec ax|+C,!
: int an^n ax;dx = frac{1}{a(n-1)} an^{n-1} ax-int an^{n-2} ax;dx qquadmbox{(for }n eq 1mbox{)},!
: intfrac{dx}{q an ax + p} = frac{1}{p^2 + q^2}(px + frac{q}{a}ln|qsin ax + pcos ax|)+C qquadmbox{(for }p^2 + q^2 eq 0mbox{)},!
: intfrac{dx}{ an ax} = frac{1}{a}ln|sin ax|+C,!
: intfrac{dx}{ an ax + 1} = frac{x}{2} + frac{1}{2a}ln|sin ax + cos ax|+C,!
: intfrac{dx}{ an ax - 1} = -frac{x}{2} + frac{1}{2a}ln|sin ax - cos ax|+C,!
: intfrac{ an ax;dx}{ an ax + 1} = frac{x}{2} - frac{1}{2a}ln|sin ax + cos ax|+C,!
: intfrac{ an ax;dx}{ an ax - 1} = frac{x}{2} + frac{1}{2a}ln|sin ax - cos ax|+C,!
Integrals containing only
secant :int sec{ax} , dx = frac{1}{a}ln{left| sec{ax} + an{ax} ight+C
:int sec^n{ax} , dx = frac{sec^{n-1}{ax} sin {ax{a(n-1)} ,+, frac{n-2}{n-1}int sec^{n-2}{ax} , dx qquad mbox{ (for }n e 1mbox{)},!
:int sec^n{x} , dx = frac{sec^{n-2}{x} an{x{n-1} ,+, frac{n-2}{n-1}int sec^{n-2}{x},dx [Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008]
:int frac{dx}{sec{x} + 1} = x - an{frac{x}{2+C
Integrals containing only
cosecant :int csc{ax} , dx = -frac{1}{a}ln{left| csc{ax} + cot{ax} ight+C
:int csc^2{x} , dx = -cot{x}+C
:int csc^n{ax} , dx = -frac{csc^{n-1}{ax} cos{ax{a(n-1)} ,+, frac{n-2}{n-1}int csc^{n-2}{ax} , dx qquad mbox{ (for }n e 1mbox{)},!
Integrals containing only
cotangent :intcot ax;dx = frac{1}{a}ln|sin ax|+C,!
: intcot^n ax;dx = -frac{1}{a(n-1)}cot^{n-1} ax - intcot^{n-2} ax;dx qquadmbox{(for }n eq 1mbox{)},!
: intfrac{dx}{1 + cot ax} = intfrac{ an ax;dx}{ an ax+1},!
: intfrac{dx}{1 - cot ax} = intfrac{ an ax;dx}{ an ax-1},!
Integrals containing both
sine andcosine : intfrac{dx}{cos axpmsin ax} = frac{1}{asqrt{2lnleft| anleft(frac{ax}{2}pmfrac{pi}{8} ight) ight|+C
: intfrac{dx}{(cos axpmsin ax)^2} = frac{1}{2a} anleft(axmpfrac{pi}{4} ight)+C
: intfrac{dx}{(cos x + sin x)^n} = frac{1}{n-1}left(frac{sin x - cos x}{(cos x + sin x)^{n - 1 - 2(n - 2)intfrac{dx}{(cos x + sin x)^{n-2 ight)
: intfrac{cos ax;dx}{cos ax + sin ax} = frac{x}{2} + frac{1}{2a}lnleft|sin ax + cos ax ight|+C
: intfrac{cos ax;dx}{cos ax - sin ax} = frac{x}{2} - frac{1}{2a}lnleft|sin ax - cos ax ight|+C
: intfrac{sin ax;dx}{cos ax + sin ax} = frac{x}{2} - frac{1}{2a}lnleft|sin ax + cos ax ight|+C
: intfrac{sin ax;dx}{cos ax - sin ax} = -frac{x}{2} - frac{1}{2a}lnleft|sin ax - cos ax ight|+C
: intfrac{cos ax;dx}{sin ax(1+cos ax)} = -frac{1}{4a} an^2frac{ax}{2}+frac{1}{2a}lnleft| anfrac{ax}{2} ight|+C
: intfrac{cos ax;dx}{sin ax(1+-cos ax)} = -frac{1}{4a}cot^2frac{ax}{2}-frac{1}{2a}lnleft| anfrac{ax}{2} ight|+C
: intfrac{sin ax;dx}{cos ax(1+sin ax)} = frac{1}{4a}cot^2left(frac{ax}{2}+frac{pi}{4} ight)+frac{1}{2a}lnleft| anleft(frac{ax}{2}+frac{pi}{4} ight) ight|+C
: intfrac{sin ax;dx}{cos ax(1-sin ax)} = frac{1}{4a} an^2left(frac{ax}{2}+frac{pi}{4} ight)-frac{1}{2a}lnleft| anleft(frac{ax}{2}+frac{pi}{4} ight) ight|+C
: intsin axcos ax;dx = frac{1}{2a}sin^2 ax +c,!
: intsin a_1xcos a_2x;dx = -frac{cos(a_1+a_2)x}{2(a_1+a_2)}-frac{cos(a_1-a_2)x}{2(a_1-a_2)} +Cqquadmbox{(for }|a_1| eq|a_2|mbox{)},!
: intsin^n axcos ax;dx = frac{1}{a(n+1)}sin^{n+1} ax +Cqquadmbox{(for }n eq -1mbox{)},!
: intsin axcos^n ax;dx = -frac{1}{a(n+1)}cos^{n+1} ax +Cqquadmbox{(for }n eq -1mbox{)},!
: intsin^n axcos^m ax;dx = -frac{sin^{n-1} axcos^{m+1} ax}{a(n+m)}+frac{n-1}{n+m}intsin^{n-2} axcos^m ax;dx qquadmbox{(for }m,n>0mbox{)},!
: also: intsin^n axcos^m ax;dx = frac{sin^{n+1} axcos^{m-1} ax}{a(n+m)} + frac{m-1}{n+m}intsin^n axcos^{m-2} ax;dx qquadmbox{(for }m,n>0mbox{)},!
: intfrac{dx}{sin axcos ax} = frac{1}{a}lnleft| an ax ight|+C
: intfrac{dx}{sin axcos^n ax} = frac{1}{a(n-1)cos^{n-1} ax}+intfrac{dx}{sin axcos^{n-2} ax} qquadmbox{(for }n eq 1mbox{)},!
: intfrac{dx}{sin^n axcos ax} = -frac{1}{a(n-1)sin^{n-1} ax}+intfrac{dx}{sin^{n-2} axcos ax} qquadmbox{(for }n eq 1mbox{)},!
: intfrac{sin ax;dx}{cos^n ax} = frac{1}{a(n-1)cos^{n-1} ax} +Cqquadmbox{(for }n eq 1mbox{)},!
: intfrac{sin^2 ax;dx}{cos ax} = -frac{1}{a}sin ax+frac{1}{a}lnleft| anleft(frac{pi}{4}+frac{ax}{2} ight) ight|+C
: intfrac{sin^2 ax;dx}{cos^n ax} = frac{sin ax}{a(n-1)cos^{n-1}ax}-frac{1}{n-1}intfrac{dx}{cos^{n-2}ax} qquadmbox{(for }n eq 1mbox{)},!
: intfrac{sin^n ax;dx}{cos ax} = -frac{sin^{n-1} ax}{a(n-1)} + intfrac{sin^{n-2} ax;dx}{cos ax} qquadmbox{(for }n eq 1mbox{)},!
: intfrac{sin^n ax;dx}{cos^m ax} = frac{sin^{n+1} ax}{a(m-1)cos^{m-1} ax}-frac{n-m+2}{m-1}intfrac{sin^n ax;dx}{cos^{m-2} ax} qquadmbox{(for }m eq 1mbox{)},!
: also: intfrac{sin^n ax;dx}{cos^m ax} = -frac{sin^{n-1} ax}{a(n-m)cos^{m-1} ax}+frac{n-1}{n-m}intfrac{sin^{n-2} ax;dx}{cos^m ax} qquadmbox{(for }m eq nmbox{)},!
: also: intfrac{sin^n ax;dx}{cos^m ax} = frac{sin^{n-1} ax}{a(m-1)cos^{m-1} ax}-frac{n-1}{m-1}intfrac{sin^{n-2} ax;dx}{cos^{m-2} ax} qquadmbox{(for }m eq 1mbox{)},!
: intfrac{cos ax;dx}{sin^n ax} = -frac{1}{a(n-1)sin^{n-1} ax} +Cqquadmbox{(for }n eq 1mbox{)},!
: intfrac{cos^2 ax;dx}{sin ax} = frac{1}{a}left(cos ax+lnleft| anfrac{ax}{2} ight| ight) +C
: intfrac{cos^2 ax;dx}{sin^n ax} = -frac{1}{n-1}left(frac{cos ax}{asin^{n-1} ax)}+intfrac{dx}{sin^{n-2} ax} ight) qquadmbox{(for }n eq 1mbox{)}
: intfrac{cos^n ax;dx}{sin^m ax} = -frac{cos^{n+1} ax}{a(m-1)sin^{m-1} ax} - frac{n-m-2}{m-1}intfrac{cos^n ax;dx}{sin^{m-2} ax} qquadmbox{(for }m eq 1mbox{)},!
: also: intfrac{cos^n ax;dx}{sin^m ax} = frac{cos^{n-1} ax}{a(n-m)sin^{m-1} ax} + frac{n-1}{n-m}intfrac{cos^{n-2} ax;dx}{sin^m ax} qquadmbox{(for }m eq nmbox{)},!
: also: intfrac{cos^n ax;dx}{sin^m ax} = -frac{cos^{n-1} ax}{a(m-1)sin^{m-1} ax} - frac{n-1}{m-1}intfrac{cos^{n-2} ax;dx}{sin^{m-2} ax} qquadmbox{(for }m eq 1mbox{)},!
Integrals containing both
sine andtangent : int sin ax an ax;dx = frac{1}{a}(ln|sec ax + an ax| - sin ax)+C,!
: intfrac{ an^n ax;dx}{sin^2 ax} = frac{1}{a(n-1)} an^{n-1} (ax) +Cqquadmbox{(for }n eq 1mbox{)},!
Integrals containing both
cosine andtangent : intfrac{ an^n ax;dx}{cos^2 ax} = frac{1}{a(n+1)} an^{n+1} ax +Cqquadmbox{(for }n eq -1mbox{)},!
Integrals containing both
sine andcotangent : intfrac{cot^n ax;dx}{sin^2 ax} = frac{1}{a(n+1)}cot^{n+1} ax +Cqquadmbox{(for }n eq -1mbox{)},!
Integrals containing both
cosine andcotangent : intfrac{cot^n ax;dx}{cos^2 ax} = frac{1}{a(1-n)} an^{1-n} ax +Cqquadmbox{(for }n eq 1mbox{)},!
Integrals with symmetric limits
: int_-c^csin {x};dx = 0 !: int_-c^ccos {x};dx = 2int_0^ccos {x};dx = 2int_-c^0cos {x};dx = 2sin {c} !: int_-c^c an {x};dx = 0 !
Wikimedia Foundation. 2010.