Moduli of algebraic curves

Moduli of algebraic curves

In algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem.

The most basic problem is that of moduli of smooth complete curves of a fixed genus. Over the field of complex numbers these correspond precisely to compact Riemann surfaces of the given genus, for which Bernhard Riemann proved the first results about moduli spaces, in particular their dimensions ("number of parameters on which the complex structure depends").

Contents

Moduli stacks of stable curves

The moduli stack \mathcal{M}_{g} classifies families of smooth projective curves, together with their isomorphisms. When g > 1, this stack may be compactified by adding new "boundary" points which correspond to stable nodal curves (together with their isomorphisms). A curve is stable if it is complete, connected, has no singularities other than double points, and has only a finite group of automorphisms. The resulting stack is denoted \overline{\mathcal{M}}_{g}. Both moduli stacks carry universal families of curves.

Both stacks above have dimension 3g − 3; hence a stable nodal curve can be completely specified by choosing the values of 3g-3 parameters, when g > 1. In lower genus, one must account for the presence of smooth families of automorphisms, by subtracting their number. There is exactly one complex curve of genus zero, the Riemann sphere, and its group of isomorphisms is PGL(2). Hence the dimension of \mathcal{M}_0 is

dim(space of genus zero curves) - dim(group of automorphisms) = 0 - dim(PGL(2)) = -3.

Likewise, in genus 1, there is a one-dimensional space of curves, but every such curve has a one-dimensional group of automorphisms. Hence the stack \mathcal{M}_1 has dimension 0.

Coarse moduli spaces

One can also consider the coarse moduli spaces representing isomorphism classes of smooth or stable curves. These coarse moduli spaces were actually studied before the notion of moduli stack was invented. In fact, the idea of a moduli stack was invented by Deligne and Mumford in an attempt to prove the projectivity of the coarse moduli spaces. In recent years, it has become apparent that the stack of curves is actually the more fundamental object.

The coarse moduli spaces have the same dimension as the stacks when g > 1; however, in genus zero the coarse moduli space has dimension zero, and in genus one, it has dimension one.

Moduli of marked curves

One can also enrich the problem by considering the moduli stack of genus g nodal curves with n marked points. Such marked curves are said to be stable if the subgroup of curve automorphisms which fix the marked points is finite. The resulting moduli stacks of smooth (or stable) genus g curves with n marked points are denoted \mathcal{M}_{g,n} (or \overline{\mathcal{M}}_{g,n}), and have dimension 3g-3 + n.

A case of particular interest is the moduli stack \overline{\mathcal{M}}_{1,1} of genus 1 curves with one marked point. This is the stack of elliptic curves. Level 1 modular forms are sections of line bundles on this stack, and level N modular forms are sections of line bundles on the stack of elliptic curves with level N structure (roughly a marking of the points of order N).

References

  • Harris, Joe; Morrison, Ian (1998). Moduli of Curves. Springer Verlag. ISBN 0387984291. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Vector bundles on algebraic curves — In mathematics, vector bundles on algebraic curves may be studied as holomorphic vector bundles on compact Riemann surfaces. which is the classical approach, or as locally free sheaves on algebraic curves C in a more general, algebraic setting… …   Wikipedia

  • Moduli space — In algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as… …   Wikipedia

  • Algebraic stack — In algebraic geometry, an algebraic stack is a concept introduced to generalize algebraic varieties, schemes, and algebraic spaces. They were originally proposed in a 1969 paper[1] by Pierre Deligne and David Mumford to define the (fine) moduli… …   Wikipedia

  • Algebraic geometry — This Togliatti surface is an algebraic surface of degree five. Algebraic geometry is a branch of mathematics which combines techniques of abstract algebra, especially commutative algebra, with the language and the problems of geometry. It… …   Wikipedia

  • Moduli scheme — In mathematics, a moduli scheme is a moduli space that exists in the category of schemes developed by Alexander Grothendieck. Some important moduli problems of algebraic geometry can be satisfactorily solved by means of scheme theory alone, while …   Wikipedia

  • List of algebraic geometry topics — This is a list of algebraic geometry topics, by Wikipedia page. Contents 1 Classical topics in projective geometry 2 Algebraic curves 3 Algebraic surfaces 4 …   Wikipedia

  • Italian school of algebraic geometry — In relation with the history of mathematics, the Italian school of algebraic geometry refers to the work over half a century or more (flourishing roughly 1885 1935) done internationally in birational geometry, particularly on algebraic surfaces.… …   Wikipedia

  • Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… …   Wikipedia

  • Plane curve — In mathematics, a plane curve is a curve in a Euclidean plane (cf. space curve). The most frequently studied cases are smooth plane curves (including piecewise smooth plane curves), and algebraic plane curves. A smooth plane curve is a curve in a …   Wikipedia

  • Genus–degree formula — In classical algebraic geometry, the genus–degree formula relates the degree d of a non singular plane curve with its arithmetic genus g via the formula: A singularity of order r decreases the genus by .[1] Proofs The proof follows immediately… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”