Microemulsion

Microemulsion

Microemulsions are clear, thermodynamically stable, isotropic liquid mixtures of oil, water and surfactant, frequently in combination with a cosurfactant. The aqueous phase may contain salt(s) and/or other ingredients, and the "oil" may actually be a complex mixture of different hydrocarbons and olefins. In contrast to ordinary emulsions, microemulsions form upon simple mixing of the components and do not require the high shear conditions generally used in the formation of ordinary emulsions. The three basic types of microemulsions are direct (oil dispersed in water, o/w), reversed (water dispersed in oil, w/o) and bicontinuous.

In ternary systems such as microemulsions, where two immiscible phases (water and ‘oil’) are present with a surfactant, the surfactant molecules may form a monolayer at the interface between the oil and water, with the hydrophobic tails of the surfactant molecules dissolved in the oil phase and the hydrophilic head groups in the aqueous phase.

Contents

Uses

Microemulsions have many commercially important uses:

Much of the work done on these systems have been motivated by their possible use to mobilize petroleum trapped in porous sandstone for enhanced oil recovery A fundamental reason for the uses of these systems is that a microemulsion phase sometimes has an ultralow interfacial tension with a separate oil or aqueous phase, which may release or mobilize them from solid phases even in conditions of slow flow or low pressure gradients.

Microemulsions also have industrial applications, one of them being the synthesis of polymers. Microemulsion polymerization is a complex heterogeneous process where transport of monomers, free radicals and other species (such as chain transfer agent, co-surfactant and inhibitors) between the aqueous and organic phases, takes place.[1] Compared with other heterogeneous polymerization processes (suspension or emulsion) microemulsion polymerization is a more complicated system. Polymerization rate is controlled by monomer partitioning between the phases, particle nucleation, and adsorption and desorption of radicals. Particle stability is affected by the amount and type of surfactant and pH of dispersing medium.[2]

The kinetics of microemulsion polymerization has much in common with emulsion polymerization kinetics, the most characteristic feature of which is the compartmentalization, where the radicals growing inside the particles are separated from each other, thus suppressing termination to a high extent and, as a consequence, providing high rates of polymerization.

Theory

Various theories concerning microemulsion formation, stability and phase behavior have been proposed over the years. For example, one explanation for their thermodynamic stability is that the oil/water dispersion is stabilized by the surfactant present and their formation involves the elastic properties of the surfactant film at the oil/water interface, which involves as parameters, the curvature and the rigidity of the film. These parameters may have an assumed or measured pressure and/or temperature dependence (and/or the salinity of the aqueous phase), which may be used to infer the region of stability of the microemulsion, or to delineate the region where three coexisting phases occur, for example. Calculations of the interfacial tension of the microemulsion with a coexisting oil or aqueous phase are also often of special focus and may sometimes be used to guide their formulation.

History and terminology

The term microemulsion was first used by Jack H. Shulman, a professor of chemistry at Columbia University, in 1959. Alternative names for these systems are often used, such as transparent emulsion, swollen micelle, micellar solution, and solubilized oil. More confusingly still, the term microemulsion can refer to the single isotropic phase that is a mixture of oil, water and surfactant, or to one that is in equilibrium with coexisting predominantly oil and/or aqueous phases, or even to other non-isotropic phases. As in the binary systems (water/surfactant or oil/surfactant), self-assembled structures of different types can be formed, ranging, for example, from (inverted) spherical and cylindrical micelles to lamellar phases and bicontinuous microemulsions, which may coexist with predominantly oil or aqueous phases.

Phase diagrams

The microemulsion region is usually characterized by constructing ternary-phase diagrams. Three components are the basic requirement to form a microemulsion: an oil phase, an aqueous phase and a surfactant. If a cosurfactant is used, it may sometimes be represented at a fixed ratio to surfactant as a single component, and treated as a single "pseudo-component". The relative amounts of these three components can be represented in a ternary phase diagram. Gibbs phase diagrams can be used to show the influence of changes in the volume fractions of the different phases on the phase behavior of the system.

The three components composing the system are each found at an apex of the triangle, where their corresponding volume fraction is 100%. Moving away from that corner reduces the volume fraction of that specific component and increases the volume fraction of one or both of the two other components. Each point within the triangle represents a possible composition of a mixture of the three components or pseudo-components, which may consist (ideally, according to the Gibbs' phase rule) of one, two or three phases. These points combine to form regions with boundaries between them, which represent the "phase behavior" of the system at constant temperature and pressure.

The Gibbs phase diagram, however, is an empirical visual observation of the state of the system and may, or may not express the true number of phases within a given composition. Apparently clear single phase formulations can still consist of multiple iso-tropic phases (e.g. the apparently clear heptane/AOT/water microemulsions consist multiple phases). Since these systems can be in equilibrium with other phases, many systems, especially those with high volume fractions of both the two imiscible phases, can be easily destabilised by anything that changes this equilibrium e.g. high or low temperature or addition of surface tension modifying agents.

However, examples of relatively stable microemulsions can be found. It is believed that the mechanism for removing acid build up in car engine oils involves low water phase volume, water-in-oil (w/o) microemulsions. Theoretically, transport of the aqueous acid droplets through the engine oil to microdispersed calcium carbonate particles in the oil should be most efficient when the droplets are small enough to transport a single hydrogen ion (the smaller the droplets, the greater the number of droplets, the faster the neutralisation). Such microemulsions are probably very stable across a reasonably wide range of elevated temperatures.


Notes

  1. ^ "A Microemulsion Process for Producing Acrylamide-Alkyl Acrylamide Copolymers", S. R. Turner, D. B. Siano and J. Bock, U. S. Patent No. 4,521,580, June 1985.
  2. ^ Ovando V.M. Polymer Bulletin 2005, 54, 129-140

References

  • Prince, Leon M., Microemulsions in Theory and Practice Academic Press (1977) ISBN 0-12-565750-1.
  • Rosano, Henri L and Clausse, Marc, eds., Microemulsion Systems (Surfactant Science Series) Marcel Dekker, Inc. (1987) ISBN 0-8247-7439-6

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • microémulsion — ● microémulsion nom féminin Système concentré et stable de micelles indépendantes. (Les microémulsions contiennent en général de l eau, de l huile, un tensioactif et un « cotensioactif », comme le pentanol. Elles sont d un grand intérêt pour la… …   Encyclopédie Universelle

  • Microémulsion — Une microémulsion est une dispersion aqueuse de petites gouttelettes d huiles stabilisées par des tensioactifs. De par leur diamètre (quelques dizaines de nanomètres), elles sont invisibles à l œil nu et même au microscope. Leur taille peut être… …   Wikipédia en Français

  • microemulsion — mikroemulsija statusas T sritis chemija apibrėžtis Termodinamiškai patvari skysta koloidinė sistema, kurios emulguotų dalelių dydis 10–100 nm. atitikmenys: angl. microemulsion rus. микроэмульсия …   Chemijos terminų aiškinamasis žodynas

  • microemulsion polymerization —  Microemulsion Polymerization  Микроэмульсионная полимеризация   Метод синтеза полимеров, включающий радикальную полимеризацию в каплях мономера предельно малого размера, образующих микроэмульсию …   Толковый англо-русский словарь по нанотехнологии. - М.

  • microemulsion — noun A stable emulsion that is clear because the individual droplets of the dispersed phase are less than 100 nanometers in diameter …   Wiktionary

  • microemulsion — mi·cro·emulsion …   English syllables

  • microemulsion — ˌ noun Etymology: micr + emulsion : an emulsion in which the dispersed phase is in the form of very small droplets usually produced and maintained with the aid of surfactants and having diameters of from 50 to 500 angstroms …   Useful english dictionary

  • микроэмульсионная полимеризация —  Microemulsion Polymerization  Микроэмульсионная полимеризация   Метод синтеза полимеров, включающий радикальную полимеризацию в каплях мономера предельно малого размера, образующих микроэмульсию …   Толковый англо-русский словарь по нанотехнологии. - М.

  • COLLOÏDES — Les solutions colloïdales ou sols sont constituées par un liquide dans lequel un corps, généralement solide, est dispersé en granules dont la dimension moyenne est comprise entre deux dixièmes et deux millièmes de micromètres. Ces granules sont… …   Encyclopédie Universelle

  • Curcuminoids — Chembox new Name = CurcuminSeparation and determination of the physico chemical characteristics of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Author(s): L. Péret Almeida, A.P.F. Cherubino, R.J. Alves, L. Dufossé and M.B.A. Glória.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”