- Mechanobiology
-
Mechanobiology is an emerging field of science at the interface of biology and engineering. It focuses on the way that physical forces and changes in cell or tissue mechanics contribute to development, physiology, and disease. A major challenge in the field is understanding mechanotransduction--the molecular mechanism by which cells sense and respond to mechanical signals.
While medicine has typically looked for the genetic basis of disease, advances in mechanobiology suggest that changes in cell mechanics, extracellular matrix structure, or mechanotransduction may contribute to the development of many diseases, including atherosclerosis, asthma, osteoporosis, heart failure, and cancer. There is also a strong mechanical basis for many generalized medical disabilities, such as lower back pain and irritable bowel syndrome.
The effectiveness of many of the mechanical therapies already in clinical use shows how important physical forces can be in physiological control. For example, pulmonary surfactant promotes lung development in premature infants; modifying the tidal volumes of mechanical ventilators reduces morbidity and death in patients with acute lung injury; expandable stents physically prevent coronary artery constriction; tissue expanders increase the skin area available for reconstructive surgery [1]; and surgical tension application devices are used for bone fracture healing, orthodontics, cosmetic breast expansion and closure of non-healing wounds.[citation needed]
Insights into the mechanical basis of tissue regulation may also lead to development of improved medical devices, biomaterials, and engineered tissues for tissue repair and reconstruction.[2]
Stretch-activated ion channels, caveolae, integrins, cadherins, growth factor receptors, myosin motors, cytoskeletal filaments, nuclei, extracellular matrix, and numerous other molecular structures and signaling molecules have been shown to contribute to cellular mechanotransduction. In addition, endogenous cell-generated traction forces contribute significantly to these responses by modulating tensional prestress within cells, tissues, and organs that govern their mechanical stability, as well as mechanical signal transmission from the macroscale to the nanoscale. [3][4]
Scientific journals
- Biomechanics and Modeling in Mechanobiology
References
- ^ Buganza Tepole A, Ploch CJ, Wong J, Gosain AK, Kuhl E. Growing skin - A computational model for skin expansion in reconstructive surgery. J. Mech. Phys. Solids, 2011;59:2177-2190.
- ^ Ingber, DE. Mechanobiology and diseases of mechanotransduction. Annals of Medicine 2003; 35: 1-14
- ^ Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 1997; 59:575-599.
- ^ Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006 20: 811-827
External links
- Donald Ingber at the Wyss Institute for Biologically Inspired Engineering at Harvard University
- Donald Ingber lab at Children’s Hospital Boston
- Michael P. Sheetz at Columbia University
- Martin A. Schwartz at University of Virginia
- Benjamin Geiger lab at the Weitzmann Institute
- Ning Wang at University of Illinois at Urbana-Champaign
- Christopher S. Chen lab at University of Pennsylvania
- Dennis Discher lab at University of Pennsylvania
- Paul Janmey lab at University of Pennsylvania
- Roger D. Kamm, Massachusetts Institute of Technology
- Ellen Kuhl, Stanford University
- Mechanobiology Lab at University of Pittsburgh School of Medicine
- Cellular Mechanobiology Lab at Penn State
- Charles H. Turner at Indiana University
- Mechanobiology Institute (MBI)
- Merryman Mechanobiology Lab at Vanderbilt University
Categories:
Wikimedia Foundation. 2010.