Chronoamperometry

Chronoamperometry
Double-pulsed chronoamperometry waveform showing integrated region for charge determination.

Chronoamperometry is an electrochemical technique in which the potential of the working electrode is stepped and the resulting current from faradic processes occurring at the electrode (caused by the potential step) is monitored as a function of time. Limited information about the identity of the electrolyzed species can be obtained from the ratio of the peak oxidation current versus the peak reduction current. However, as with all pulsed techniques, chronoamperometry generates high charging currents, which decay exponentially with time as any RC circuit. The Faradaic current--which is due to electron transfer events and is most often the current component of interest--decays as described in the Cottrell equation. In most electrochemical cells this decay is much slower than the charging decay--cells with no supporting electrolyte are notable exceptions. Most commonly investigated with a three electrode system. Since the current is integrated over relatively longer time intervals, chronoamperometry gives a better signal to noise ratio in comparison to other amperometric technique.[1][2][3]

Example

Anthracene in deoxygenated dimethylformamide (DMF) will be reduced (An + e- -> An-) at the electrode surface that is at a certain negative potential. The reduction will be diffusion-limited, thereby causing the current to drop in time (proportional to the diffusion gradient that is formed by diffusion).

You can do this experiment several times increasing electrode potentials from low to high. (In between the experiments, the solution should be stirred.) When you measure the current i(t) at a certain fixed time point τ after applying the voltage, you will see that at a certain moment the current i(τ) does not rise anymore; you have reached the mass-transfer-limited region. This means that anthracene arrives as fast as diffusion can bring it to the electrode.

See also

References

  1. ^ Kissinger, Peter; William R. Heineman (1996-01-23). Laboratory Techniques in Electroanalytical Chemistry, Second Edition, Revised and Expanded (2 ed.). CRC. ISBN 0824794451. 
  2. ^ Bard, Allen J.; Larry R. Faulkner (2000-12-18). Electrochemical Methods: Fundamentals and Applications (2 ed.). Wiley. ISBN 0471043729. 
  3. ^ Zoski, Cynthia G. (2007-02-07). Handbook of Electrochemistry. Elsevier Science. ISBN 0444519580. 

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • chronoamperometry — chronoamperometrija statusas T sritis chemija apibrėžtis Elektrocheminis tyrimo metodas, pagrįstas elektrolizės srovės stiprio kitimo esant pastoviam elektrodo potencialui matavimu. atitikmenys: angl. chronoamperometry rus. хроноамперометрия …   Chemijos terminų aiškinamasis žodynas

  • chronoamperometry — noun An analytical technique in which an electric current is measured during the course of a titration …   Wiktionary

  • Cottrell equation — In electrochemistry, the Cottrell equation describes the change in electric current with respect to time in a controlled potential experiment, such as chronoamperometry. Specifically it describes the current response when the potential is a step… …   Wikipedia

  • Electrochemical reaction mechanism — In chemistry, an electrochemical reaction mechanism is the step by step sequence of elementary steps, involving at least one outer sphere electron transfer, by which an overall chemical change occurs [Bard, A.J. L.R. Faulkner, Electrochemical… …   Wikipedia

  • Cyclic voltammetry — Typical cyclic voltammogram where ipc and ipa show the peak cathodic and anodic current respectively for a reversible reaction. Cyclic voltammetry or CV is a type of potentiodynamic electrochemical measurement. In a cyclic voltammetry experiment… …   Wikipedia

  • Differential pulse voltammetry — (AKA Differential Pulse Polarography or DPP) is often used to make electrochemical measurements. It can be considered as a derivative of linear sweep voltammetry or staircase voltammetry, with a series of regular voltage pulses superimposed on… …   Wikipedia

  • Coulometry — is the name given to a group of techniques in analytical chemistry that determine the amount of matter transformed during an electrolysis reaction by measuring the amount of electricity (in coulombs) consumed or produced.[1] There are two basic… …   Wikipedia

  • Voltammetry — is a category of electroanalytical methods used in analytical chemistry and various industrial processes. In voltammetry, information about an analyte is obtained by measuring the current as the potential is varied. Three electrode system… …   Wikipedia

  • Electroanalytical method — Electroanalytical methods are a class of techniques in analytical chemistry which study an analyte by measuring the potential (Volts) and/or current (Amps) in an electrochemical cell containing the analyte. [Bard, A.J.; Faulkner, L.R.… …   Wikipedia

  • Potentiometer (measuring instrument) — A potentiometer is an instrument for measuring the potential (voltage) in a circuit. Before the introduction of the moving coil and digital volt meters, potentiometers were used in measuring voltage, hence the meter part of their name. The method …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”