- Electrochemical reaction mechanism
In chemistry, an
electrochemical reaction mechanism is the step by step sequence ofelementary step s, involving at least one outer sphereelectron transfer , by which an overall chemical change occurs [Bard, A.J. & L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. New York: John Wiley & Sons, 2nd Edition, 2000.] [Geiger, W.E.; "Organometallics" 2007, "26", 5738.] .Overview
Electrochemical mechanisms are important to all
redox chemistry includingcorrosion , redox activephotochemistry includingphotosynthesis , other biological systems often involvingelectron transport chain s and other forms of homogeneous and heterogeneous electron transfer. Such reactions are most often studied with standard three electrode techniques such ascyclic voltammetry (CV),chronoamperometry , and bulk electrolysis as well as more complex experiments involvingrotating disk electrode s androtating ring-disk electrode s. In the case ofphotoinduced electron transfer the use oftime-resolved spectroscopy is common.Formalism
When describing electrochemical reactions an "E" and "C" formalism is often employed. The E represents an
electron transfer ; sometimes EO and ER are used to represent oxidations and reductions respectively. The C represents a chemical reaction which can be any elementary reaction step and is often called a "following" reaction. Incoordination chemistry common C steps which "follow" electron transfer areligand loss and association. The ligand loss or gain is associated with a geometric change in the complexescoordination sphere .: [MLn] 2+ + e- → [MLn] + E
: [MLn] + → [ML(n-1)] + + L C
The reaction above would be called an EC reaction.
Characterization
The production of [ML(n-1)] + in the reaction above by the "following" chemical reaction produces a species directly at the electode that could display redox chemistry any where in a CV plot or none at all. The change in coordination from [MLn] + to [ML(n-1)] + often prevents the observation of "reversible" behavior during electrochemical experiments like cyclic voltammetry. On the forward scan the expected diffusion wave is observed, in example above the reduction of [MLn] 2+ to [MLn] 1+. However on the return scan the corresponding wave is not observed, in the example above this would be the wave corresponding to the oxidation of [MLn] 1+ to [MLn] 2+. In our example there is no [MLn] 1+ to oxidize since it has been converted to [ML(n-1)] + through ligand loss. The return wave can sometimes be observed by increasing the scan rates so the following chemical reaction can be observed before the chemical reaction takes place. This often requires the use of
ultramicroelectrode s (UME) capable of very high scan rates of 0.5 to 5.0 V/s. Plots of forward and reverse peak ratios against modified forms of the scan rate often identify the rate of the chemical reaction. It has become common a practice to model such plots with electrochemical simulations. The results of such studies are suspect since simulation require excellent experimental data, better than that routinely obtained and reported. Further more the parameters of such studies are rarely reported and often include an unreasonably high variable to data ratio. A better practice is to look for a simple well documented relationship between observed results and implied phenomenon; or to investigate the phenomenon through an alternate technique such aschronoamperometry or those involving a rotating electrode.Electrocatalysis
Electrocatalysis is a
catalytic process involving oxidation or reduction through the direct transfer ofelectrons . The electochemical mechanisms of electrocatalytic process are a common research subject for various fields of chemistry and associated sciences. This is important to the development ofwater oxidation andfuel cells catalysts. For example half the water oxidation reaction is the reduction of protons to hydrogen, the subsequenthalf reaction .:2H+ + 2e- → H2
This reaction requires some form of catalyst to avoid a large
overpotential in the delivery of electrons. A catalyst can accomplish this reaction through different reaction pathways, two examples are listed below for the homogeneous catalysts [MLn] 2+.:"Pathway 1"
: [MLn] 2+ + e- → [MLn] + E
: [MLn] + + H+ → [HMLn] 2+ C
: [HMLn] 2+ + e- → [HMLn] + E
: [HMLn] + + H+ → [H2MLn] 2+ C
: [H2MLn] 2+ → [MLn] 2+ + H2 C
:"Pathway 2"
: [MLn] 2+ + e- → [MLn] + E
: [MLn] + + H+ → [HMLn] 2+ C
:2 [HMLn] 2+ → [MLn] 2+ + H2 C
Pathway 1 is described as a ECECC while pathway 2 would be described as an ECC. If the catalyst was being considered for solid support pathway 1 which requires a single metal center to function would be a viable candidate. In contrast a solid support system which separates the individual metal centers would render a catalysts that operates through pathway 2 useless since it requires a step which is second order in metal center. Determining the reaction mechanism is much like other methods with some techniques unique to elctrochemistry. In most cases electron transfer can be assumed to be much faster than the chemical reactions. Unlike
stoichiometric reactions where the steps between the starting materials and therate limiting step dominate incatalysis the observed reaction order is usually dominated by the steps between the catalytic resting state and the rate limiting step."Following" physical transformations
During potential variant experiments common to go through a redox couple in which the major species is transformed from a species that is soluble in the solution to one that is insoluble. This results in nucleation process in which a new species plates out on the
working electrode . If a species has been deposited on the electrode during a potential sweep then on the return return sweep a stripping wave is usually observed.: [MLn] +(solvated) + e- → [MLn] 0(solid) nucleation
: [MLn] 0(solid) → e- + [MLn] +(solvated) stripping
While the nucleation wave may be pronounced or difficult the detect the stripping wave is usually very distinct. Often these phenomenon can be avoided by reducing the concentration of the complex in solution. Neither these physical state changes involve a chemical reaction mechanism but they are worth mentioning here since the resulting data is at times confused with some chemical reaction mechanisms.
References
Wikimedia Foundation. 2010.