Aircraft Communication Addressing and Reporting System

Aircraft Communication Addressing and Reporting System

Aircraft Communications Addressing and Reporting System (or ACARS) is a digital datalink system for transmission of small messages between aircraft and ground stations via radio or satellite. The protocol, which was designed by ARINC to replace their VHF voice service and deployed in 1978, [Citation
last =Carlsson
first =Barbara
author-link =
publication-date =October 2002
date =
year =
title =GLOBALink/VHF: The Future Is Now
periodical =The Global Link
series =
publication-place =
place =
publisher =
volume =
issue =
pages =4
url =http://www.arinc.com/news/newsletters/gl_10_02.pdf
issn =
doi =
oclc =
accessdate =2007-01-24
] uses telex formats. SITA later augmented their worldwide ground data network by adding radio stations to provide ACARS service. ACARS will over the next 20 years be superseded by the Aeronautical Telecommunications Network (ATN) protocol for Air Traffic Control communications and by the Internet Protocol for airline communications.

History of ACARS

Prior to the introduction of datalink, all communication between the aircraft (i.e., the flight crew) and personnel on the ground was performed using voice communication. This communication used either VHF or HF voice radios, which was further augmented with SATCOM in the early 1990s. In many cases, the voice-relayed information involves dedicated radio operators and digital messages sent to an airline teletype system or its successor systems.

Introduction of ACARS Systems

The airlines, in an effort to reduce crew workload and improve data integrity, introduced the ACARS system in the late 1980s. (A few initial ACARS systems were introduced before the late 1980s, but ACARS did not start to get any widespread use by the major airlines until the later part of the 1980s.) Although the term ACARS is often taken into context as the datalink
avionics Line-replaceable unit installed on the aircraft, the term actually refers to a complete air and ground system. On the aircraft, the ACARS system was made up of an avionics computer called an ACARS Management Unit (MU) and a CDU (Control Display Unit). The MU was designed to send and receive digital messages from the ground using existing VHF radios. On the ground, the ACARS system was made up of a network of radio transceivers, which would receive (or transmit) the datalink messages, as well as route them to various airlines on the network.

Note that the initial ACARS systems were designed to the ARINC standard 597. This system was later upgraded in the late 1980’s to the ARINC 724 characteristic. ARINC 724 addressed aircraftinstalled with avionics supporting digital data bus interfaces. This was subsequently revised to ARINC 724B, which was the primary characteristic used during the 1990s for all digital aircraft. With the introduction of the 724B specification, the ACARS MUs were also coupled with industry standard protocols for operation with flight management system MCDUs using the ARINC 739 protocol, and printers using the ARINC 740 protocol. The industry has defined a new ARINC characteristic, called ARINC 758, which is for CMU systems, thenext generation of ACARS MUs.

OOOI Events

One of the initial applications for ACARS was toautomatically detect and report changes to the majorflight phases (Out of the gate, Off the ground, On theground and Into the Gate); referred to in the industry,as OOOI. TheseOOOI events were determined by algorithms in theACARS MUs that used aircraft sensors (such asdoors, parking brake and strut switch sensors) asinputs. At the start of each flight phase, the ACARS MUwould transmit a digital message to the groundcontaining the flight phase, the time at which itoccurred, and other related information such as fuelon board or origin and destination. These messageswere primarily used to automate the payroll functionswithin an airline, where flight crews were paiddifferent rates depending on the flight phase.

Flight management system Interface

In addition to detecting events on the aircraft andsending messages automatically to the ground, initialsystems were expanded to support new interfaceswith other on-board avionics. During the late 1980sand early 1990s, a datalink interface between theACARS MUs and Flight management systems(FMS) was introduced. This interface enabled flightplans and weather information to be sent from theground to the ACARS MU, which would then beforwarded to the FMS. This feature gave the airlinethe capability to update FMSs while in flight, andallowed the flight crew to evaluate new weatherconditions, or alternate flight plans.

Maintenance Data Download

It was the introduction in the early 1990s of theinterface between the FDAMS / ACMS systems andthe ACARS MU that resulted in datalink gaining a wider acceptance by airlines. The FDAMS / ACMSsystems which analyze engine, aircraft, andoperational performance conditions, were now able toprovide performance data to the airlines on theground in real time using the ACARS network. Thisreduced the need for airline personnel to go to theaircraft to off-load the data from these systems.These systems were capable of identifying abnormalflight conditions and automatically sending real-timemessages to an airline. Detailed engine reports couldalso be transmitted to the ground via ACARS. Theairlines used these reports to automate enginetrending activities. This capability enabled airlines tobetter monitor their engine performance and identifyand plan repair and maintenance activities.

In addition to the FMS and FDAMS interfaces, theindustry started to upgrade the on-board MaintenanceComputers in the 1990s to support the transmissionof maintenance related information real-time throughACARS. This enabled airline maintenance personnelto receive real-time data associated with maintenancefaults on the aircraft. When coupled with the FDAMSdata, airline maintenance personnel could now startplanning repair and maintenance activities while the aircraftwas still in flight.

Interactive Crew Interface

All of the processing described above is performedautomatically by the ACARS MU and the associatedother avionics systems, with action performed by theflight crew. As part of the growth of the ACARSfunctionality, the ACARS MUs also interfaceddirectly with a control display unit (CDU), located inthe cockpit. This CDU, often referred to as an MCDU or MIDU, provides the flight crew with theability to send and receive messages similar to today’s
email. To facilitate this communication, the airlinesin partnership with their ACARS vendor, woulddefine MCDU screens that could be presented to theflight crew and enable them to perform specificfunctions. This feature provided the flight crewflexibility in the types of information requested fromthe ground, and the types of reports sent to theground.

As an example, the flight crew could pull up an MCDU screen that allowed them to send to theground a request for various weather information.Upon entering in the desired locations for the weatherinformation and the type of weather informationdesired, the ACARS would then transmit the messageto the ground. In response to this request message,ground computers would send the requested weatherinformation back to the ACARS MU, which wouldbe displayed and/or printed.

Airlines began adding new messages to support newapplications (Weather, Winds, Clearances,Connecting Flights…) and ACARS systems becamecustomized to support airline unique applications,and unique ground computer requirements. Thisresults in each airline having their own uniqueACARS application operating on their aircraft. Someairlines have more than 75 MCDU screens for theirflight crews, where other airlines may have only a dozen different screens. In addition, since each airline’s ground computerswere different, the contents and formats of themessages sent by an ACARS MU were different foreach airline.

How it works

A person or a system on board may create a message and send it via ACARS to a system or user on the ground, and vice versa. Messages may be sent either automatically or manually.

VHF subnetwork

A network of VHF ground radio stations ensure that aircraft can communicate with ground end systems in real-time from practically anywhere in the world. VHF communication is line-of-sight, and provides communication with ground based transceivers (often referred to as Remote Ground Stations or RGSs). The typical range is dependent on altitude, with a 200-mile transmission range common at high altitudes. Thus VHF communication is only applicable over landmasses which have a VHF ground network installed.


=SATCOM and HF subnetworks=

SATCOM provides worldwide coverage, with the exception of operation at the high latitudes (such as needed for flights over the poles). HF datalink is a relatively new network whose installation began in 1995 and was completed in 2001. HF datalink is responsible for new polar routes. Aircraft with HF datalink can fly polar routes and maintain communication with ground based systems (ATC centers and airline operation centers). ARINC is the only service provider for HF datalink.

Datalink message types

ACARS messages may be of three types:
* Air Traffic Control (ATC)
* Aeronautical Operational Control (AOC)
* Airline Administrative Control (AAC)

ATC messages are used to communicate between the aircraft and Air traffic control. These messages are defined in [https://www.arinc.com/cf/store/catalog.cfm?prod_group_id=1&category_group_id=3 ARINC Standard 623] . ATC messages are used by aircraft crew to request clearances, and by ground controllers to provide those clearances.

AOC and AAC messages are used to communicate between the aircraft and its base. These messages are either defined by the users, but must then meet at least the guidelines of [https://www.arinc.com/cf/store/catalog.cfm?prod_group_id=1&category_group_id=3 ARINC Standard 618] , or they are standardized according ARINC Standard 633. Various types of messages are possible and these include fuel consumption, engine performance data, and aircraft position as well as free text data.

Example transmissions

Departure delay downlink

A pilot may want to inform his flight operations department that departure has been delayed by Air Traffic Control (ATC). The pilot would first bring up a CMU MCDU screen that allows him to enter the expected time of the delay and the reason for the delay. After entering the information on the MCDU, the pilot would then press a “SEND” key on the MCDU. The CMU would detect the SEND key being pushed, and would then generate a digital message containing the delay information. This message may include such information as aircraft registration number, the origination and destination airport codes, the current ETA before the delay and the current expected delay time. The CMU would then send the message to one of the existing radios (HF, SATCOM or VHF, with the selection of theradio based on special logic contained within the CMU). For a message to be sent over the VHF network, the radio would transmit the VHF signals containing the delay message. This message is then received by a VHF Remote Ground Station (RGS).

It should be noted that the majority of ACARS messages are typically only 100 to 200 characters in length. Such messages are made up of a one-block transmission from (or to) the aircraft. One ACARS block is constrained to be no more that 220 characters within the body of the message. For downlink messages which are longer than 220 characters, the ACARS unit will split the message into multipleblocks, transmitting each block to the RGS (there is a constraint that no message may be made up of more than 16 blocks). For these multi-block messages, the RGS collects each block until the complete message is received before processing and routing the message. The ACARS also contains protocols to support retry of failed messages or retransmission of messages when changing service providers.

Once the RGS receives the complete message, the RGS forwards the message to the datalink service provider's (DSP) main computer system. The DSP ground network uses landlines to link the RGS to the DSP. The DSP uses information contained in their routing table to forward the message to the airlines or other destinations. This table is maintained by the DSP and identifies each aircraft (by tail number), and the types of messages that it can process. (Each airline must tell its service provider(s) what messages and message labels their ACARS systems will send, and for each message, where they want the service provider to route the message. The service provider then updates their routing tables from this information.) Each type of message sent by the CMU has a specific message label, which is contained in the header information of the message. Using the label contained in the message, the DSP looks up the message and forwards to the airline’s computer system. The message is then processed by the airline’s computer system.

This processing performed by an airline may include reformatting the message, populating databases for later analysis, as well as forwarding the message to other departments, such as flight operations, maintenance, engineering, finance or other organizations within an airline. In the example of a delay message, the message may be routed via the airline’s network to both their operationsdepartment as well as to a facility at the aircraft’s destination notifying them of a potential late arrival.

The transmission time from when the flight crew presses the send key to send the message, to the time that it is processed within an airline’s computer system varies, but is generally on the order of 6 to 15 seconds. The messages that are sent to the ground from the CMU are referred to as a "downlink" message.

Weather report uplink

For a message to be transmitted to the aircraft (referred to as an uplink message), the process is nearly a mirror image of how a downlink is sent from the aircraft. For example, in response to an ACARS downlink message requesting weather information, a weather report is constructed by the airline’s computer system. The message contains the aircraft registration number in the headerof the message, with the body of the message containing the actual weather information. This message is sent to the DSP's main computer system.

The DSP transmits the message over their ground network to a VHF remote ground station in the vicinity of the aircraft. The remote ground station broadcasts the message over the VHF frequency. The on-board VHF radio receives the VHF signal and passes the message to the CMU (with the internal modem transforming the signal into a digital message). The CMU validates the aircraft registrationnumber, and processes the message.

The processing performed on the uplink message by the CMU depends on the specific airline requirements. In general, an uplink is either forwarded to another avionics computer, such as an FMS or FDAMS, or is processed by the CMU. For messages which the CMU is the destination, such as a weather report uplink, the flight crew can go to a specific MCDU screen which contains a list of all ofthe received uplink messages. The flight crew can then select the weather message, and have the message viewed on the MCDU. The ACARS unit may also print the message on the cockpit printer (either automatically upon receiving the message or upon flight crew pressing a PRINT prompt on the MCDU screen).

FDAMS message downlink

Messages are sent to the ground from other on-board systems in a similar manner as the delay message example discussed previously. As an example, an FDAMS system may have a series of algorithms active to monitor engine exceedance conditions during flight (such as checking engine vibration or oil temperature exceeding normal operating conditions). The FDAMS system, upon detecting such an event, automatically creates an engine exceedance condition message, with applicable data contained within the body of the message. The message is forwarded to the CMU, using what is referred to as ARINC 619 data protocols. The CMU would then transmit the message to the ground. In this case, the service provider routing table for an engine exceedance message is typically defined to have the message routed directly to an airline’s maintenance department. This enables airline maintenance personnel to be notified of a potential problem, in real time.

There are 3 major components to the ACARS datalink system:
* Aircraft equipment
* Service provider
* Ground processing system

Aircraft equipment

The heart of the datalink system on board the aircraft is the ACARS Management Unit (MU). The older version of MU is defined in [https://www.arinc.com/cf/store/catalog.cfm?prod_group_id=1&category_group_id=4 ARINC Characteristic 724B] . Newer versions are referred to as the Communications Management Unit (CMU) and are defined in [https://www.arinc.com/cf/store/catalog.cfm?prod_group_id=1&category_group_id=4 ARINC Characteristic 758] .

Aircraft equipment consists of airborne end systems and a router. End systems are the source of ACARS downlinks and the destination for uplinks. The MU/CMU is the router. Its function is to route a downlink by means of the most efficient air-ground subnetwork. In many cases, the MU/CMU also acts as an end system for AOC messages.

Typical airborne end systems are the Flight Management System (FMS), datalink printer, maintenance computer, and cabin terminal. Typical datalink functions are:
*FMS - sends flight plan change requests, position reports, etc. Receives clearances and controller instructions.
*Printer - as an end system, can be addressed from the ground to automatically print an uplink message.
*Maintenance Computer - downlinks diagnostic messages. In advanced systems, in-flight troubleshooting can be conducted by technicians on the ground by using datalink messages to command diagnostic routines in the maintenance computer and analyzing downlinked results.
*Cabin Terminal - Often used by flight attendants to communicate special needs of passengers, gate changes due to delays, catering, etc.

ACARS messages are transmitted over one of three air-ground subnetworks.
*VHF is the most commonly used and least expensive. Transmission is line-of-sight so VHF is not available over the oceans.
*SATCOM provides worldwide coverage (except in polar regions) by means of the INMARSAT satellite network. It is a fairly expensive service.
*HF is the most recently established subnetwork. Its purpose is to provide coverage in the polar regions where SATCOM coverage is unreliable.

The router function built into the MU/CMU determines which subnetwork to use when routing a message from the aircraft to the ground. The airline operator provides a routing table that the CMU uses to select the best subnetwork.

Datalink Service Provider

The role of the datalink service provider (DSP) is to deliver a message from the aircraft to the ground end system, and vice versa.

Because the ACARS network is modeled after the point-to-point telex network, all messages come to a central processing location. The DSP routes the message to the appropriate end system using its network of land lines and ground stations. Before the days of computers, messages would come in to the central processing location and be punched to paper tape. The tape would be physically carried to the machine connected to the intended destination. Today the routing function is done by computer, but the model remains the same.

There are currently two primary service providers ofground networks in the world (ARINC and
SITA), although specific countries have implementedtheir own network, with the help of either ARINC or
SITA. ARINC operates a worldwide network and has also assisted the CAAC in China, as well as Thailand and South America with the installation of VHF networks. SITA has operatedthe network in Europe, Middle East, South Americaand Asia for many years. They have also recentlystarted a network in the US to compete with ARINC.

Until recently, each area of theworld was supported by a single service provider.This is changing, and both ARINC and SITA are competing and installing networks that cover thesame regions.

Ground end system

The ground end system is the destination for downlinks, and the source of uplinks. Generally, ground end systems are either government agencies such as CAA/FAA, or airline operations headquarters. CAA end systems provide air traffic services such as clearances. Airline operations provides information necessary for operating the airline efficiently, such as gate assignments, maintenance, passenger needs, etc. In the beginning most airlines created their own legacy host systems for managing their ACARS messages. In more recent times a few off-the-shelf products are available to manage the ground hosting. One such product is the SITA AIRCOM Server [cite web
last =
first =
authorlink =
coauthors =
title =AIRCOM Server
work =
publisher =Sita
date =
url =http://www.sita.aero/Solutions/Aircraft_communications/AIRCOM_Cockpit_Communications_Services/AIRCOM+Server/default.htm
format =
doi =
accessdate =
] , which is used by about 40 airlines including several of the world's largest. This product enables the end user to receive downlinks, send uplinks, reformat messages, distribute messages, track a/c and much more. There is more information available on the SITA website - www.sita.aero. There is also a product by Rockwell Collins, HERMES, [cite web
last =
first =
authorlink =
coauthors =
title =HERMES
work =
publisher =Rockwell Collins
date =
url =http://www.rockwellcollins.com/content/pdf/pdf_4838.pdf
format =
doi =
accessdate =
] for the collation, parsing and reformatting of ACARS messages for delivery into back end airline systems and back via the ACARS networks to the originating or other aircraft in the fleet. see [http://www.rockwellcollins.com/content/pdf/pdf_4838.pdf] This product is now been extended into the eFlight concept for integrated airlines operations. [cite web
last =
first =
authorlink =
coauthors =
title =eFlight
work =
publisher =Rockwell Collins
date =
url =http://www.rockwellcollins.com/eFlight
format =
doi =
accessdate =
]

Increasingly though, more cost effective solutions from independent providers are penetrating this market, such as Archimedes Airboard from [http://www.aviit.com AviIT Ltd] . This product is already in use as the ACARS ground server for a number of high profile airlines including [http://www.etihad.com Etihad Airways] in the UAE and [http://www.flybmi.com bmi] in the U.K.

ARINC Specifications

Much of the processing performed by the CMU as well as basic requirements of the hardware are defined by [https://www.arinc.com/cf/store/catalog.cfm?prod_group_id=1 ARINC specifications] . The following is a list of the major ARINC specifications that define standards that govern many aspects of ACARS systems:

Acronyms and Glossary

It has been rumored that the introduction of datalink into the airline industry originated as part of a contest to see how many acronyms could be developed around a specific technology. Whether this is true or not, the industry is at the point where acronyms are now nested within acronyms! For example, AOA is an acronym for ACARS Over AVLC, where AVLC itself is an acronym for Aviation VHF Link Control and VHF is also an acronym for Very High Frequency.

;ACARS : Aircraft Communications Addressing and Reporting System;ACMS : Aircraft Condition Monitoring System;AMS : ACARS Message Security, as specified in ARINC 823;AOA : ACARS Over AVLC. With the introduction of VDL Mode 2, the ACARS protocols were modified to take advantage of the higher data rate made possible by Mode 2. AOA is an interim step in replacing the ACARS protocols with ATN protocols.;ATN : Aeronautical Telecommunications Network. As air traffic increases, ACARS will no longer have the capacity or flexibility to handle the large amount of datalink communications. ATN is planned to replace ACARS in the future and will provide services such as authentication, security, and a true internetworking architecture. Europe is leading the US in the implementation of ATN.;AVLC : Aviation VHF Link Control. A particular protocol used for aeronautical datalink communications.;CDU : Control Display Unit;CMF : Communications Management Function. The software that runs in a CMU, and sometimes as a software partition in an integrated avionics computer.;CMU : Communications Management Unit. Successor to the MU, the CMU performs similar datalink routing functions, but has additional capacity to support more functions. CMU standards are defined in ARINC Characteristic 758.;FDAMS : Flight Data Acquisition and Management System;FMS : Flight Management System. FMS standards are defined in ARINC Characteristic 702 and 702A.;HF : High Frequency. A portion of the RF spectrum.;LRU : Line Replaceable Unit. An avionics "black box" that can be replaced on the flight line, without downing the aircraft for maintenance.;MCDU : Multifunction Control Display Unit. A text-only device that displays messages to the aircrew and accepts crew input on an integrated keyboard. MCDU standards are defined in ARINC Characteristic 739. MCDUs have seven input ports and can be used with seven different systems, such as CMU or FMS. Each system connected to an MCDU generates its own display pages and accepts keyboard input, when it is selected as the system controlling the MCDU.;MIDU : Multi-Input Interactive Display Unit (often used as a third cockpit CDU).;MU : Management Unit. Often referred to as the ACARS MU, this is an avionics LRU that routes datalink messages to and from the ground.;OOOI : Shorthand for the basic flight phases -- Out of the gate, Off the ground, On the ground, In the gate.;POA : Plain Old ACARS. Refers to the set of ACARS communications protocols in effect before the introduction of VDL Mode 2. The term is derived from POTS (Plain old telephone service) that refers to the wired analog telephone network.;SATCOM : Satellite Communications. Airborne SATCOM equipment includes a satellite data unit, high power amplifier, and an antenna with a steerable beam. A typical SATCOM installation can support a datalink channel as well as several voice channels.;VDL : VHF Data Link;VHF : Very High Frequency. A portion of the RF spectrum.

See also

* [http://www.arinc-acars.com/ ARINC] , inventors of ACARS
* [http://www.sita.aero/ SITA] , find the latest of ACARS data from SITA
* AIREP
* PIREP
* AMDAR
* RECCO
* Airline teletype system
* [http://www.acarsd.org/ acarsd] , free ACARS decoder software for Linux/Windows

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Aircraft Communication Addressing and Reporting System — ou ACARS est un système de communications codées (selon la norme ARINC) entre un aéronef et une station au sol. C est un système automatique de surveillance par satellite de l état de l avion en vol, envoyé vers le centre de maintenance de la… …   Wikipédia en Français

  • Deep-ocean Assessment and Reporting of Tsunamis — A diagram of the Dart II System A tsunami b …   Wikipedia

  • ACARS — Aircraft Communications Addressing And Reporting System (Regional » Airport Codes) * Aircraft Communication Addressing and Reporting System (Governmental » Military) * ARINC Communications Addressing and Reporting System (Academic & Science »… …   Abbreviations dictionary

  • ACARS — Aircraft Communication Addressing and Reporting System Aircraft Communication Addressing and Reporting System ou ACARS est un système de communications codées (selon la norme ARINC) entre un aéronef et une station au sol. C est un système… …   Wikipédia en Français

  • Automatic dependent surveillance-broadcast — (ADS B) is a cooperative surveillance technique for air traffic control and related applications. An ADS B out equipped aircraft determines its own position using a global navigation satellite system and periodically broadcasts this position and… …   Wikipedia

  • United Airlines Flight 93 — United 93 redirects here. For the movie, see United 93 (film). For the related made for TV movie, see Flight 93 (TV movie). United Airlines Flight 93 UA 93 s flight path on September 11, 2001 from Newark, New Jersey to Shanksville, Pennsylvania …   Wikipedia

  • Air France Flight 447 — F GZCP, the aircraft involved in the accident Accident summary Date 1 June 2009 …   Wikipedia

  • Meteorology — For other uses of the root word meteor , see Meteor (disambiguation). For the work by Aristotle, see Meteorology (Aristotle). Not to be confused with Metrology. Part of the Nature series on Weather   …   Wikipedia

  • Weather forecasting — weather forecaster redirects here. For other uses, see Weatherman (disambiguation). Forecast of surface pressures five days into the future for the north Pacific, North America, and north Atlantic ocean. Weather forecasting is the application of… …   Wikipedia

  • Weather radar — in Norman, Oklahoma with rainshaft …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”