- Agarose gel electrophoresis
Agarose
gel electrophoresis is a method used inbiochemistry andmolecular biology to separateDNA , orRNA molecules by size. This is achieved by moving negatively charged nucleic acid molecules through anagarose matrix with anelectric field (electrophoresis ). Shorter molecules move faster and migrate farther than longer ones. [Sambrook J, Russel DW (2001). Molecular Cloning: A Laboratory Manual 3rd Ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.]Applications
* Estimation of the size of DNA molecules following restriction enzyme digestion, e.g. in restriction mapping of cloned DNA.
* Analysis ofPCR products, e.g. in molecular genetic diagnosis orgenetic fingerprinting
* Separation of restricted genomic DNA prior to Southern transfer, or of RNA prior to Northern transfer.The advantages are that the gel is easily poured, does not denature the samples. The samples can also be recovered.
The disadvantages are that gels can melt during electrophoresis, the buffer can become exhausted, and different forms of genetic material may run in unpredictable forms.
Factors affecting migration
The most important factor is the length of the DNA molecule, smaller molecules travel farther. But
conformation of the DNA molecule is also a factor. To avoid this problem linear molecules are usually separated, usually DNA fragments from arestriction digest , linear DNAPCR products, or RNAs.Increasing the agarose concentration of a gel reduces the migration speed and enables separation of smaller DNA molecules. The higher the voltage, the faster the DNA moves. But voltage is limited by the fact that it heats and ultimately causes the gel to melt. High voltages also decrease the resolution (above about 5 to 8 V/cm).
Conformations of a DNA
plasmid that has not been cut with arestriction enzyme will move with different speeds (slowest to fastest): nicked or open circular, linearised, or supercoiled plasmid.Visualisation: Ethidium Bromide (EtBr) and dyes
The most common dye used to make DNA or RNA bands visible for agarose gel electrophoresis is
ethidium bromide , usually abbreviated as EtBr. It fluoresces under UV light when intercalated into DNA (or RNA). By running DNA through an EtBr-treated gel and visualizing it with UV light, any band containing more than ~20ng DNA becomes distinctly visible. EtBr is a known carcinogen, however, and safer alternatives are available.SYBR Green I is another dsDNA stain, produced by
Invitrogen . It is more expensive, but 25 times more sensitive, and possibly safer than EtBr, though there is no data addressing its mutagenicity or toxicity in humans. [ [http://probes.invitrogen.com/media/pis/mp07567.pdf SYBR Green I Nucleic Acid Gel Stain ] ]SYBR Safe is a variant of SYBR Green that has been shown to have low enough levels of mutagenicity and toxicity to be deemed nonhazardous waste under U.S. Federal regulations. [ [http://probes.invitrogen.com/media/pis/mp33100.pdf SYBR Safe DNA Gel Stain ] ] It has similar sensitivity levels to EtBr, [ [http://probes.invitrogen.com/media/pis/mp33100.pdf SYBR Safe DNA Gel Stain ] ] but, like SYBR Green, is significantly more expensive.Since EtBr stained DNA is not visible in natural light, scientists mix DNA with negatively charged loading buffers before adding the mixture to the gel. Loading buffers are useful because they are visible in natural light (as opposed to UV light for EtBr stained DNA), and they co-sediment with DNA (meaning they move at the same speed as DNA of a certain length).
Xylene cyanol andBromophenol blue are common loading buffers; they run about the same speed as DNA fragments that are 5000 bp and 300 bp in length respectively, but the precise position varies with percentage of the gel. Other less frequently used progress markers areCresol Red andOrange G which run at about 125 bp and 50 bp.Percent agarose and resolution limits
Agarose gel electrophoresis can be used for the separation of DNA fragments ranging from 50
base pair to several megabases (millions of bases) using specialized apparatus. The distance between DNA bands of a given length is determined by the percent agarose in the gel. In general lower concentrations of agarose are better for larger molecules because they result in greater separation between bands that are close in size. The disadvantage of higher concentrations is the long run times (sometimes days). Instead high percentage agarose gels should be run with a pulsed field electrophoresis (PFE), orfield inversion electrophoresis .Most agarose gels are made with between 0.7% (good separation or resolution of large 5–10kb DNA fragments) and 2% (good resolution for small 0.2–1kb fragments) agarose dissolved in electrophoresis buffer. Some people go as high as 3% for separating very tiny fragments but a vertical
polyacrylamide gel is more appropriate in this case. Low percentage gels are very weak and may break when you try to lift them. High percentage gels are often brittle and do not set evenly. 1% gels are common for many applications.Buffers
There are a number of buffers used for agarose electrophoresis. The most common being: tris acetate
EDTA (TAE), Tris/Borate/EDTA (TBE) andSodium borate (SB). TAE has the lowest buffering capacity but provides the best resolution for larger DNA. This means a lower voltage and more time, but a better product. SB is relatively new and is ineffective in resolving fragments larger than 5 kbp; However, with its low conductivity, a much higher voltage could be used (up to 35 V/cm), which means a shorter analysis time for routine electrophoresis. As low as one base pair size difference could be resolved in 3% agarose gel with an extremely low conductivity medium (1 mM Lithium borate). [Brody JR, Calhoun ES, Gallmeier E, Creavalle TD, Kern SE (2004). Ultra-fast high-resolution agarose electrophoresis of DNA and RNA using low-molarity conductive media. Biotechniques. 37:598-602. [http://www.biotechniques.com/default.asp?page=article_archive&subsection=article_display&id=101200415&prevpage=article_archive] ]Analysis
After electrophoresis the gel is illuminated with an
ultraviolet lamp (usually by placing it on a light box, while using protective gear to limit exposure to ultraviolet radiation) to view the DNA bands. Theethidium bromide fluoresces reddish-orange in the presence of DNA. The DNA band can also be cut out of the gel, and can then be dissolved to retrieve the purified DNA.The gel can then be photographed usually with a digital or polaroid camera. Although the stained nucleic acid fluoresces reddish-orange, images are usually shown in black and white (see figures).Gel electrophoresis research often takes advantage of software-based image analysis tools, such as
ImageJ .Typical method
Materials
Typically 10-30 μl/sample of the DNA fragments to separate are obtained, as well as a mixture of DNA fragments (usually 10-20) of known size (after processing with DNA size markers either from a commercial source or prepared manually).
*Buffer solution , usuallyTBE buffer or TAE 1.0x, pH 8.0
*Agarose An ultraviolet-fluorescent dye,ethidium bromide , (5.25 mg/ml in H2O). Thestock solution be careful handling this.::Alternative dyes may be used, such asSYBR Green .
*Nitrile rubber gloves::Latex gloves do not protect well fromethidium bromide
* A color marker dye containing a lowmolecular weight dye such as "bromophenol blue " (to enable tracking the progress of the electrophoresis) and glycerol (to make the DNA solution more dense so it will sink into the wells of the gel).
* A gel rack
* A "comb"
* Power Supply
* UV lamp or UV lightbox or other method to visualize DNA in the gelPreparation
There are several methods for preparing gels. A common example is shown here. Other methods might differ in the buffering system used, the sample size to be loaded, the total volume of the gel (typically thickness is kept to a constant amount while length and breadth are varied as needed). Most agarose gels used in modern
biochemistry andmolecular biology are prepared and run horizontally.# Make a 1% agarose solution in 100ml TAE, for typical DNA fragments (see figures). A solution of up to 2-4% can be used if you analyze small DNA molecules, and for large molecules, a solution as low as 0.7% can be used.
# Carefully bring the solution just to the boil to dissolve the agarose, preferably in amicrowave oven .
# Let the solution cool down to about 60 °C at room temperature, or water bath. Stir or swirl the solution while cooling."Wear gloves from here on,
ethidium bromide is amutagen , for more information on safety seeethidium bromide "# Add 5 µl ethidium bromide stock (10 mg/ml) per 100 ml gel solution for a final concentration of 0.5 ug/ml. Be very careful when handling the concentrated stock. Some researchers prefer not to add ethidium bromide to the gel itself, instead soaking the gel in an ethidium bromide solution after running.
# Stir the solution to disperse the ethidium bromide, then pour it into the gel rack.
# Insert the comb at one side of the gel, about 5-10 mm from the end of the gel.
# When the gel has cooled down and become solid, carefully remove the comb. The holes that remain in the gel are the wells or slots.
# Put the gel, together with the rack, into a tank with TAE.Ethidium bromide at the same concentration can be added to the buffer. The gel must be completely covered with TAE, with the slots at the end electrode that will have the negative current.Procedure
After the gel has been prepared, use a micropipette to inject about 2.5 µl of stained DNA (a DNA ladder is also highly recommended). Close the lid of the electrophoresis chamber and apply current (typically 100 V for 30 minutes with 15 ml of gel). The colored dye in the DNA ladder and DNA samples acts as a "front wave" that runs faster than the DNA itself. When the "front wave" approaches the end of the gel, the current is stopped. The DNA is stained with ethidium bromide, and is then visible under
ultraviolet light.#The agarose gel with three slots/wells (S).
#Injection of DNA ladder (molecular weight markers) into the first slot.
#DNA ladder injected. Injection of samples into the second and third slot.
#A current is applied. The DNA moves toward the positiveanode due to the negative charges on itsphosphate backbone.
#Small DNA strands move fast, large DNA strands move slowly through the gel. The DNA is not normally visible during this process, so the marker dye is added to the DNA to avoid the DNA being run entirely off the gel. The marker dye has a low molecular weight, and migrates faster than the DNA, so as long as the marker has not run past the end of the gel, the DNA will still be in the gel.
# Add the color marker dye to the DNA ladder.References
See also
*
gel electrophoresis
*SDS-polyacrylamide gel electrophoresis
*Southern blot
*Northern blot
*PCR
*Restriction endonuclease External links
* [http://arbl.cvmbs.colostate.edu/hbooks/genetics/biotech/gels/index.html How to run a DNA or RNA gel]
* [http://arbl.cvmbs.colostate.edu/hbooks/genetics/biotech/gels/virgel.html Animation of gel analysis of DNA restriction fragments]
* [http://www.umd.umich.edu/labtv/modules/agarosegel/agarose.html Detailed description and movies of the preparation and uses of agarose gels]
* [http://web.mit.edu/7.02/virtual_lab/RDM/RDM1virtuallab.html Step by step photos of running a gel and extracting DNA]
Wikimedia Foundation. 2010.