- Glutathione S-transferase, C-terminal domain
Pfam_box
Symbol = GST_C
Name = Glutathione S-transferase, C-terminal domain
width =
caption =
Pfam= PF00043
InterPro= IPR004046
SMART=
Prosite =
SCOP = 2gst
TCDB =
OPM family= 139
OPM protein= 1z9h
PDB=PDB3|1gnwA:111-206 PDB3|1bx9A:111-206 PDB3|1aw9 :107-202PDB3|1byeB:110-201 PDB3|1axdA:110-201 PDB3|1pn9B:104-190PDB3|1jlvB:111-185 PDB3|1r5aA:126-192 PDB3|1n2aA:100-189PDB3|1a0fB:100-189 PDB3|2pmtB:100-189 PDB3|1pmt :100-189PDB3|1f2eD:100-189 PDB3|1nhyA:107-199 PDB3|2cz3A:105-197PDB3|2cz2A:105-197 PDB3|1fw1A:153-197 PDB3|1e6bA:111-203PDB3|1oe7A:102-196 PDB3|1oe8A:102-196 PDB3|1u3iA:102-196PDB3|1k0dC:223-345 PDB3|1hqoA:223-345 PDB3|1k0bC:223-345PDB3|1k0cA:223-345 PDB3|1g6yB:223-345 PDB3|1k0aA:223-345PDB3|1g6wC:223-345 PDB3|1jzrD:223-345 PDB3|2ljrA:128-201PDB3|1ljrB:128-201 PDB3|2c3nD:111-200 PDB3|2c3tD:111-200PDB3|2c3qD:111-200 PDB3|1v2aC:103-188 PDB3|1z9hB:276-370PDB3|1eemA:114-210 PDB3|1oyjC:106-205 PDB3|1gwcB:122-203PDB3|1gumE:100-192 PDB3|1xwgA:99-192 PDB3|1pl2B:99-192PDB3|1pkwB:99-192 PDB3|1pkzB:99-192 PDB3|1usbA:99-192PDB3|1guhA:99-192 PDB3|1pl1B:99-192 PDB3|1gsdA:99-192PDB3|1gsfA:99-192 PDB3|1k3lB:99-192 PDB3|1gseA:99-192PDB3|1k3oB:99-192 PDB3|1ydkA:99-192 PDB3|1k3yB:99-192PDB3|1tdiA:99-192 PDB3|1ml6A:99-192 PDB3|1f3bA:99-192PDB3|1f3aB:99-192 PDB3|1ev9A:99-192 PDB3|1ev4A:99-192PDB3|1vf3A:99-192 PDB3|1vf2B:99-192 PDB3|1vf1A:99-192PDB3|1vf4A:99-192 PDB3|1gukA:99-192 PDB3|1b48B:99-192PDB3|1oktA:134-197 PDB3|1zl9B:109-193 PDB3|1tw9H:143-190PDB3|1yq1B:128-194 PDB3|1iyhC:131-185 PDB3|1v40C:131-185PDB3|1iyiA:131-185 PDB3|1pd22:131-185 PDB3|1b4pA:104-192PDB3|6gswA:104-192 PDB3|6gsuA:104-192 PDB3|6gsvB:104-192PDB3|6gstA:104-192 PDB3|4gstA:104-192 PDB3|6gsxA:104-192PDB3|6gsyA:104-192 PDB3|1mtcA:104-192 PDB3|3fygB:104-192PDB3|5gstA:104-192 PDB3|5fwgB:104-192 PDB3|3gstB:104-192PDB3|2gstA:104-192 PDB3|4gtuE:104-192 PDB3|1xw6B:104-192PDB3|1yj6C:104-192 PDB3|1xwkA:104-192 PDB3|1gtuC:104-192PDB3|3gtuC:104-192 PDB3|1xw5B:104-192 PDB3|1hnbB:104-192PDB3|2ab6B:104-192 PDB3|2c4jB:104-192 PDB3|1hncA:104-192PDB3|1hna :104-192 PDB3|2gtuA:104-192 PDB3|1ykcB:104-192PDB3|1c72A:104-192 PDB3|1gsuA:104-192 PDB3|1fhe :99-187PDB3|2fheB:98-186 PDB3|1gtb :99-187 PDB3|1u88A:99-187PDB3|1m9bA:99-187 PDB3|1gta :99-187 PDB3|1ua5A:99-187PDB3|1m9aA:99-187 PDB3|1m99A:99-187 PDB3|1y6eB:99-187PDB3|1bg5 :99-187 PDB3|1u87A:99-187 PDB3|1b8xA:99-187PDB3|1gne :99-187 PDB3|1gtiE:97-188 PDB3|1gsyB:97-188PDB3|1glpA:97-188 PDB3|1glqA:97-188 PDB3|2glrB:97-188PDB3|1bayB:97-188 PDB3|1lx2A:97-188 PDB3|1md3B:97-188PDB3|18gsA:97-188 PDB3|19gsA:97-188 PDB3|7gssB:97-188PDB3|1aqwA:97-188 PDB3|20gsA:97-188 PDB3|1eogB:97-188PDB3|1md4B:97-188 PDB3|9gssA:97-188 PDB3|2pgtB:97-188PDB3|8gssC:97-188 PDB3|1aqvA:97-188 PDB3|1eohE:97-188PDB3|5gssA:97-188 PDB3|1pgtA:97-188 PDB3|22gsB:97-188PDB3|21gsA:97-188 PDB3|1zgnB:97-188 PDB3|6gssA:97-188PDB3|1px7B:97-188 PDB3|14gsB:97-188 PDB3|3pgtB:97-188PDB3|1aqxB:97-188 PDB3|1px6A:97-188 PDB3|17gsB:97-188PDB3|16gsB:97-188 PDB3|1kbnA:97-188 PDB3|4gssA:97-188PDB3|3gssB:97-188 PDB3|11gsA:97-188 PDB3|2gssB:97-188PDB3|4pgtB:97-188 PDB3|2gsrA:94-185 PDB3|1tu8B:94-186PDB3|1tu7B:94-186 PDB3|1m0uA:141-235 PDB3|2gsq :95-189PDB3|1gsq :95-189Glutathione S-transferase, C-terminal domain is a
structural domain ofglutathione S-transferase (GST).GST conjugates reduced
glutathione to a variety of targets includingS-crystallin fromsquid , the eukaryoticelongation factor 1-gamma, the HSP26 family of stress-related proteins andauxin -regulated proteins in plants.The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminaldomain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes.
Biological function and classification
In eukaryotes, glutathione S-transferases (GSTs) participate in the detoxification of reactive electrophilic compounds by catalysing their conjugation to glutathione. The GST domain is also found in S-crystallins from squid, and proteins with no known GST activity, such as eukaryotic elongation factors 1-gamma and the HSP26 family of stress-related proteins, which include auxin-regulated proteins in plants and stringent starvation proteins in "
Escherichia coli ". The major lens polypeptide of cephalopods is also a GSTcite journal |author=Armstrong RN |title=Structure, catalytic mechanism, and evolution of the glutathione transferases |journal=Chem. Res. Toxicol. |volume=10 |issue=1 |pages=2–18 |year=1997 |pmid=9074797 |doi=10.1021/tx960072x] cite journal |author=Board PG, Coggan M, ChelvanayagamG, Easteal S, Jermiin LS, Schulte GK, Danley DE, Hoth LR, Griffor MC, Kamath AV, Rosner MH, Chrunyk BA, Perregaux DE, Gabel CA, Geoghegan KF, Pandit J |title=Identification, characterization, and crystal structure of the Omega class glutathione transferases |journal=J. Biol. Chem. |volume=275 |issue=32 |pages=24798–24806 |year=2000 |pmid=10783391 |doi=10.1074/jbc.M001706200] cite journal |author=Board P, Chelvanayagam G, Dulhunty A, Gage P, Curtis S |title=The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator |journal=J. Biol. Chem. |volume=276 |issue=5 |pages=3319–3323 |year=2001 |pmid=11035031 |doi=10.1074/jbc.M007874200] cite journal |author=Eaton DL, Bammler TK |title=Concise review of the glutathione S-transferases and their significance to toxicology |journal=Toxicol. Sci. |volume=49 |issue=2 |pages=156–164 |year=1999 |pmid=10416260 |doi=10.1093/toxsci/49.2.156] .Bacterial GSTs of known function often have a specific, growth-supporting role in biodegradative metabolism: epoxide ring opening and tetrachlorohydroquinone reductive dehalogenation are two examples of the reactions catalysed by these bacterial GSTs. Some regulatory proteins, like the stringent starvation proteins, also belong to the GST familycite journal |author=Parker MW, Board PG, Polekhina G, Blackburn AC |title=Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity |journal=Biochemistry |volume=40 |issue=6 |pages=1567–1576 |year=2001 |pmid=11327815 |doi=10.1021/bi002249z] cite journal |author=Vuilleumier S |title=Bacterial glutathione S-transferases: what are they good for? |journal=J. Bacteriol. |volume=179 |issue=5 |pages=1431–1441 |year=1997 |pmid=9045797] . GST seems to be absent from Archaea in which gamma-glutamylcysteine substitute to glutathione as major thiol.
Oligomerization
Glutathione S-transferases form homodimers, but in eukaryotes can also form heterodimers of the A1 and A2 or YC1 and YC2 subunits. The homodimeric enzymes display a conserved structural fold. Each monomer is composed of a distinct N-terminal sub-domain, which adopts the thioredoxin fold, and a C-terminal all-helical sub-domain. This entry is the C-terminal domain.
Human proteins containing this domain
EEF1E1 ;EEF1G ;GDAP1 ;GSTA1 ;GSTA2 ;GSTA3 ;GSTA4 ;GSTA5 ;GSTM1 ;GSTM2 ;GSTM3 ;GSTM4 ;GSTM5 ;GSTO1 ;GSTP1 ;GSTT1 ;GSTT2 ;GSTZ1 ;MARS ;PGDS ;PTGDS2 ;PTGES2 ;VARS ;References
Further reading
* [1] . Three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate: catalytic roles of Cys10 and His106. Nishida M, Harada S, Noguchi S, Satow Y, Inoue H, Takahashi K; J Mol Biol 1998;281:135-147. PMID|9680481
* [2] . Plant glutathione transferases. Dixon DP, Lapthorn A, Edwards R; Genome Biol 2002;3:REVIEWS3004. PMID|11897031
Wikimedia Foundation. 2010.