Scale-inverse-chi-square distribution

Scale-inverse-chi-square distribution

Probability distribution
name =Scale-inverse-chi-square
type =density
pdf_

cdf_

parameters = u > 0,
sigma^2 > 0,
support =x in (0, infty)
pdf =frac{(sigma^2 u/2)^{ u/2
{Gamma( u/2)}~frac{expleft [ frac{- u sigma^2}{2 x} ight] }{x^{1+ u/2
cdf =Gammaleft(frac{ u}{2},frac{sigma^2 u}{2x} ight)left/Gammaleft(frac{ u}{2} ight) ight.
mean =frac{ u sigma^2}{ u-2} for u >2,
median =
mode =frac{ u sigma^2}{ u+2}
variance =frac{2 u^2 sigma^4}{( u-2)^2 ( u-4)}for u >4,
skewness =frac{4}{ u-6}sqrt{2( u-4)}for u >6,
kurtosis =frac{12(5 u-22)}{( u-6)( u-8)}for u >8,
entropy =frac{ u}{2}!+!lnleft(frac{sigma^2 u}{2}Gammaleft(frac{ u}{2} ight) ight)!-!left(1!+!frac{ u}{2} ight)psileft(frac{ u}{2} ight)
mgf =frac{2}{Gamma(frac{ u}{2})}left(frac{-sigma^2 u t}{2} ight)^{!!frac{ u}{4!!K_{frac{ u}{2left(sqrt{-2sigma^2 u t} ight)
char =frac{2}{Gamma(frac{ u}{2})}left(frac{-isigma^2 u t}{2} ight)^{!!frac{ u}{4!!K_{frac{ u}{2left(sqrt{-2isigma^2 u t} ight)
The scaled inverse chi-square distribution arises in Bayesian statistics. It is a more general distribution than the inverse-chi-square distribution. Its probability density function over the domain x>0 is

: f(x; u, sigma^2)=frac{(sigma^2 u/2)^{ u/2{Gamma( u/2)}~frac{expleft [ frac{- u sigma^2}{2 x} ight] }{x^{1+ u/2

where u is the degrees of freedom parameter and sigma^2 is the scale parameter. The cumulative distribution function is

:F(x; u, sigma^2)=Gammaleft(frac{ u}{2},frac{sigma^2 u}{2x} ight)left/Gammaleft(frac{ u}{2} ight) ight.:=Qleft(frac{ u}{2},frac{sigma^2 u}{2x} ight)

where Gamma(a,x) is the incomplete Gamma function, Gamma(x) is the Gamma function and Q(a,x) is a regularized Gamma function. The characteristic function is

:varphi(t; u,sigma^2)=:frac{2}{Gamma(frac{ u}{2})}left(frac{-isigma^2 u t}{2} ight)^{!!frac{ u}{4!!K_{frac{ u}{2left(sqrt{-2isigma^2 u t} ight)

where K_{frac{ u}{2(z) is the modified Bessel function of the second kind.

Parameter estimation

The maximum likelihood estimate of sigma^2 is

:sigma^2 = n/sum_{i=1}^N frac{1}{x_i}.

The maximum likelihood estimate of frac{ u}{2} can be found using Newton's method on:

:ln(frac{ u}{2}) + psi(frac{ u}{2}) = sum_{i=1}^N ln(x_i) - n ln(sigma^2)

where psi(x) is the digamma function. An initial estimate can be found by taking the formula for mean and solving it for u. Let ar{x} = frac{1}{n}sum_{i=1}^N x_i be the sample mean. Then an initial estimate for u is given by:

:frac{ u}{2} = frac{ar{x{ar{x} - sigma^2}.

Related distributions

* Relation to chi-square distribution: If X sim chi^2( u) and Y = frac{sigma^2 u}{X} then Y sim mbox{Scale-inv-}chi^2( u, sigma^2)
* Relation to the inverse gamma distribution: If X sim extrm{Inv-Gamma}left(frac{ u}{2}, frac{ usigma^2}{2} ight) then X sim mbox{Scale-inv-}chi^2( u, sigma^2).
* The scale-inverse-chi-square distribution is a conjugate prior for the variance parameter of a normal distribution.

ee also

*Inverse chi-square distribution
*Chi-square distribution
*Bayesian probability


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Inverse-chi-square distribution — Probability distribution name =Inverse chi square type =density pdf cdf parameters = u > 0! support =x in (0, infty)! pdf =frac{2^{ u/2{Gamma( u/2)},x^{ u/2 1} e^{ 1/(2 x)}! cdf =Gamma!left(frac{ u}{2},frac{1}{2x} ight)igg/, Gamma!left(frac{… …   Wikipedia

  • Chi-squared distribution — This article is about the mathematics of the chi squared distribution. For its uses in statistics, see chi squared test. For the music group, see Chi2 (band). Probability density function Cumulative distribution function …   Wikipedia

  • Inverse-gamma distribution — Probability distribution name =Inverse gamma type =density pdf cdf parameters =alpha>0 shape (real) eta>0 scale (real) support =xin(0;infty)! pdf =frac{eta^alpha}{Gamma(alpha)} x^{ alpha 1} exp left(frac{ eta}{x} ight) cdf… …   Wikipedia

  • Noncentral chi-squared distribution — Noncentral chi squared Probability density function Cumulative distribution function parameters …   Wikipedia

  • Lévy distribution — Probability distribution name =Lévy (unshifted) type =density pdf cdf parameters =c > 0, support =x in [0, infty) pdf =sqrt{frac{c}{2pi frac{e^{ c/2x{x^{3/2 cdf = extrm{erfc}left(sqrt{c/2x} ight) mean =infinite median =c/2( extrm{erf}^{… …   Wikipedia

  • Pearson distribution — The Pearson distribution is a family of continuous probability distributions. It was first published by Karl Pearson in 1895 and subsequently extended by him in 1901 and 1916 in a series of articles on biostatistics. History The Pearson system… …   Wikipedia

  • Generalised hyperbolic distribution — Probability distribution name =generalised hyperbolic type =density pdf cdf parameters =mu location (real) lambda (real) alpha (real) eta asymmetry parameter (real) delta scale parameter (real) gamma = sqrt{alpha^2 eta^2} support =x in ( infty; …   Wikipedia

  • Wishart distribution — Probability distribution name =Wishart type =density pdf cdf parameters = n > 0! deg. of freedom (real) mathbf{V} > 0, scale matrix ( pos. def) support =mathbf{W}! is positive definite pdf =frac{left|mathbf{W} ight|^frac{n p 1}{2… …   Wikipedia

  • Student's t-distribution — Probability distribution name =Student s t type =density pdf cdf parameters = u > 0 degrees of freedom (real) support =x in ( infty; +infty)! pdf =frac{Gamma(frac{ u+1}{2})} {sqrt{ upi},Gamma(frac{ u}{2})} left(1+frac{x^2}{ u} ight)^{ (frac{… …   Wikipedia

  • List of statistics topics — Please add any Wikipedia articles related to statistics that are not already on this list.The Related changes link in the margin of this page (below search) leads to a list of the most recent changes to the articles listed below. To see the most… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”