Aircraft flight mechanics

Aircraft flight mechanics

In aeronautics, aircraft flight mechanics is the study of the forces that act on an aircraft in flight, and the way the aircraft responds to those forces. [Clancy, L.J. "Aerodynamics". Section 14.1]

Aircraft flight mechanics are relevant to gliders, helicopters and aeroplanes.
An Aeroplane (Airplane in US usage), is defined as: "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight". (ICAO Document 9110)

Straight and level flight of aircraft

In flight, an aircraft can be considered as being acted on by four forces: lift, weight, thrust, and drag. [Clancy, L.J., "Aerodynamics", Section 14.2] Thrust is the force generated by the engine and acts along the engine's thrust vector. Lift acts perpendicular to the vector representing the aircraft's velocity relative to the atmosphere. Drag acts parallel to the aircraft's velocity vector, but in the opposite direction because drag resists motion through the air. Weight acts through the aircraft's centre of gravity, towards the centre of the Earth.

In straight and level flight, lift is approximately equal to weight. In addition, if the aircraft is not accelerating, thrust is approximately equal to drag. [Clancy, L.J., "Aerodynamics", Figure 14.1]

In straight, climbing flight, thrust exceeds drag, and lift is less than weight. [Clancy, L.J., "Aerodynamics", Section 14.5] At first, this seems incorrect because if an aircraft is climbing it seems lift must exceed weight. When an aircraft is climbing at constant speed it is its thrust that enables it to climb and gain extra potential energy. Lift acts perpendicular to the velocity vector so lift is unable to alter the aircraft's potential energy or kinetic energy. This can be seen by considering an aerobatic aircraft in straight vertical flight - one that is climbing straight upwards (or descending straight downwards.) Vertical flight requires no lift! When flying straight upwards the aircraft can reach zero airspeed before falling earthwards - the wing is generating no lift and so does not stall.

In straight, descending flight thrust is less than drag, and lift is less than weight. [Clancy, L.J., "Aerodynamics", Section 14.4] In turning flight, lift exceeds weight and produces a load factor greater than one, determined by the aircraft's angle of bank. [Clancy, L.J., "Aerodynamics", Section 14.6]

Aircraft control and movement

There are three primary ways for an aircraft to change its orientation relative to the passing air. "Pitch" (movement of the nose up or down), "Roll" (rotation around the longitudinal axis, that is, the axis which runs along the length of the aircraft) and "Yaw" (movement of the nose to left or right.) Turning the aircraft (change of heading) requires the aircraft firstly to roll to achieve an angle of bank; when the desired change of heading has been accomplished the aircraft must again be rolled in the opposite direction to reduce the angle of bank to zero.

Aircraft control surfaces

"Yaw" is induced by a moveable rudder, attached to a vertical fin usually at the rear of the aircraft. Sometimes the entire fin is movable. Movement of the rudder changes the size and orientation of the force the vertical surface produces. Since the force is created a distance behind the centre of gravity this sideways force causes a yawing motion. On a large aircraft there may be several independent rudders on the single fin for both safety and to control the inter-linked yaw and roll actions.

It should be realized that using yaw alone is not a very efficient way of executing a level turn in an aircraft and will result in some sideslip. A precise combination of bank and lift must be generated to cause the required centripetal forces without producing a sideslip.

"Pitch" is controlled by the rear part of the tailplane's horizontal stabilizer being hinged to create an elevator. By moving the elevator control backwards the pilot moves the elevator up (a position of negative camber) and the downwards force on the horizontal tail is increased. The angle of attack on the wings increased so the nose is pitched up and lift is generally increased. In micro-lights and hang gliders the pitch action is reversed - the pitch control system is much simpler so when the pilot moves the elevator control backwards it produces a nose-down pitch and the angle of attack on the wing is reduced.

The system of a fixed tail surface and moveable elevators is standard in subsonic aircraft. Craft capable of supersonic flight often have a stabilator, an all-moving tail surface. Pitch is changed in this case by moving the entire horizontal surface of the tail. This seemingly simple innovation was one of the key technologies that made supersonic flight possible. In early attempts, as pilots exceeded the critical Mach number, a strange phenomenon made their control surfaces useless, and their aircraft uncontrollable. It was determined that as an aircraft approaches the speed of sound, the air approaching the aircraft is compressed and shock waves begin to form at all the leading edges and around the hinge lines of the elevator. These shock waves caused movements of the elevator to cause no pressure change on the stabilizer upstream of the elevator. The problem was solved by changing the stabilizer and hinged elevator to an all-moving stabilizer - the entire horizontal surface of the tail became a one-piece control surface. Also, in supersonic flight the change in camber has less effect on lift and a stabilator produces less dragFact|date=December 2007.

Aircraft that need control at extreme angles of attack are sometimes fitted with a canard configuration, in which pitching movement is created using a forward foreplane (roughly level with the cockpit). Such a system produces an immediate increase in lift and therefore a better response to pitch controls. This system is common in delta-wing aircraft (deltaplane), which use a stabilator-type canard foreplane. A disadvantage to a canard configuration compared to an aft tail is that the wing cannot use as much extension of flaps to increase wing lift at slow speeds due to stall performance. A combination tri-surface aircraft uses both a canard and an aft tail (in addition to the main wing) to achieve advantages of both configurations.

A further design of tailplane is the V-tail, so named because that instead of the standard inverted T or T-tail, there are two vertical fins angled away from each other in a V (if they're arranged like a V, at least one of them isn't vertical). To produce yaw like a rudder, the two trailing edge control surfaces move in the same direction. To produce pitch like an elevator, the surfaces move in opposite directions.

"Roll" is controlled by movable sections on the trailing edge of the wings called ailerons. The ailerons move differentially - one goes up as the other goes down. The difference in camber of the wing cause a difference in lift and thus a rolling movement. As well as ailerons, there are sometimes also spoilers - small hinged plates on the upper surface of the wing, originally used to produce drag to slow the aircraft down and to reduce lift when descending. On modern aircraft, which have the benefit of automation, they can be used in combination with the ailerons to provide roll control.

The earliest powered aircraft built by the Wright brothers did not have ailerons. The whole wing was warped using wires. Wing warping is efficient since there is no discontinuity in the wing geometry. But as speeds increased unintentional warping became a problem and so ailerons were developed.

The actual linkages within the aircraft are discussed in aircraft flight control systems.

References

* Clancy, L.J. (1975). "Aerodynamics". Chapter 14 "Elementary Mechanics of Flight". Pitman Publishing Limited, London. ISBN 0 273 01120 0

Notes

See also

* Longitudinal static stability
* Flight controls
* Aerodynamics
* Aeronautics
* Flight dynamics
* Aircraft
* Fixed-wing aircraft
* Variable-Response Research Aircraft
* Banked turns
* Skid-to-turn


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Flight control surfaces — Aircraft flight control surfaces allow a pilot to adjust and control the aircraft s flight attitude.Development of an effective set of flight controls was a critical advance in the development of the aircraft. Early efforts at fixed wing aircraft …   Wikipedia

  • Flight dynamics — is the science of air and space vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle s center of mass, known as pitch , roll and yaw… …   Wikipedia

  • Aircraft dynamic modes — Source: Flight dynamicsThe dynamic stability of a vehicle denotes the complete study of the motion occurring after the vehicle has been disturbed. If the aircraft returns to equilibrium without overshoot, the motion is a simple subsidence. If the …   Wikipedia

  • Flight test — is a branch of aeronautical engineering that develops and gathers data during flight of an aircraft and then analyses the data to evaluate the flight characteristics of the aircraft and validate its design, including safety aspects. The flight… …   Wikipedia

  • Aircraft maintenance — is the technology related to the actions required to maintain (or improve) the airworthiness and the designed in reliability of an aircraft and its systems, subsystems, and components throughout the life cycle of the aircraft. Among some of these …   Wikipedia

  • Aircraft Maintenance Technician — Aircraft Maintenance Technician, as used in the United States, refers to an individual who holds a Mechanic certificate issued by the Federal Aviation Administration; the rules for certification, and for certificate holders, are detailed in… …   Wikipedia

  • Flight for Life — is a prehospital care service with many bases of operation across the United States. Flight for Life is primarily known for its emergency medical helicopter transport, but also operates a fleet of land vehicles and fixed wing aircraft for the… …   Wikipedia

  • Aircraft diesel engine — Thielert Centurion aircraft diesel engine. The aircraft diesel engine or aero diesel has not been widely used as an aircraft engine. Diesel engines were used in airships and were tried in aircraft in the late 1920s …   Wikipedia

  • Mechanics Bay — Basic information Local authority Auckland City Facilities Surrounds North Bayswater Northeast …   Wikipedia

  • Fixed-wing aircraft — It is worth noting that the air industry s insurers base their calculations on the number of deaths per journey statistic while the industry itself generally uses the number of deaths per kilometre statistic in press releases. [… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”