Newton da Costa

Newton da Costa
Newton da Costa

Newton da Costa at Berkeley in 1973
Photo courtesy George M. Bergman
Full name Newton da Costa
Born 16 September 1929 (1929-09-16) (age 82)
Curitiba, Brazil
Era Contemporary philosophy
Region Brazilian Science
School Logic
Main interests Logic, Mathematics , Philosophy, Philosophy of Science
Notable ideas Paraconsistent logic

Newton Carneiro Affonso da Costa (born on 16 September in 1929 in Curitiba, Brazil) is a Brazilian mathematician, logician, and philosopher. He studied engineering and mathematics at the Federal University of Paraná in Curitiba and the title of his 1961 Ph.D. Dissertation was Topological spaces and continuous functions.

Contents

Work

Paraconsistency

Da Costa's international recognition came especially through his work on paraconsistent logic and its application to various fields such as philosophy, law, computing, and artificial intelligence. He is one of the founders of this non-classical logic. In addition, he constructed the theory of quasi-truth that constitutes a generalization of Alfred Tarski's theory of truth, and applied it to the foundations of science.

Other fields; foundations of physics

The scope of his research also includes model theory, generalized Galois theory, axiomatic foundations of quantum theory and relativity, complexity theory, and abstract logics. Da Costa has significantly contributed to the philosophy of logic, paraconsistent modal logics, ontology, and philosophy of science. He served as the President of the Brazilian Association of Logic and the Director of the Institute of Mathematics at the University of Sao Paulo. He received many awards and held numerous visiting scholarships at universities and centers of research in all continents.

Da Costa and physicist Francisco Antônio Dória axiomatized large portions of classical physics with the help of Suppes predicates. They used that technique to show that for the axiomatized version of dynamical systems theory, chaotic properties of those systems are undecidable and Gödel-incomplete, that is, a sentence like X is chaotic is undecidable within that axiomatics. They later exhibited similar results for systems in other areas, such as mathematical economics.

Da Costa believes that the significant progress in the field of logic will give rise to new fundamental developments in computing and technology, especially in connection with non-classical logics and their applications.

Variable-binding term operators

Da Costa is co-discoverer of the truth-set principle and co-creator of the classical logic of variable-binding term operators—both with John Corcoran. He is also co-author with Chris Mortensen of the definitive pre-1980 history of variable-binding term operators in classical first order logic: “Notes on the theory of variable-binding term operators”, History and Philosophy of Logic, vol.4 (1983) 63-72.

P = NP

Together with Francisco Antônio Dória, Da Costa has published two papers with conditional relative proofs of the consistency of P = NP with the usual set-theoretic axioms ZFC. The results they obtain are similar to the results of DeMillo and Lipton (consistency of P = NP with fragments of arithmetic) and those of Sazonov and Maté (conditional proofs of the consistency of P = NP with strong systems).

Basically da Costa and Doria define a formal sentence [P = NP]' which is the same as P = NP in the standard model for arithmetic; however, because [P = NP]' by its very definition includes a disjunct that is not refutable in ZFC, [P = NP]' is not refutable in ZFC, so ZFC + [P = NP]' is consistent (assuming that ZFC is). The paper then continues by an informal proof of the implication

If ZFC + [P = NP]' is consistent, then so is ZFC + [P = NP].

However, a review by Ralf Schindler[1] points out that this last step is too short and contains a gap. A recently published (2006) clarification by the authors shows that their intent was to exhibit a conditional result that was dependent on what they call a "naïvely plausible condition". The 2003 conditional result can be reformulated, according to da Costa and Doria 2006 (in press), as

If ZFC + [P = NP]' is omega-consistent, then ZFC + [P = NP] is consistent.

So far no formal argument has been constructed to show that ZFC + [P = NP]' is omega-consistent.

In his reviews for Mathematical Reviews of the da Costa/Doria papers on P=NP, logician Andreas Blass states that "the absence of rigor led to numerous errors (and ambiguities)"; he also rejects da Costa's "naïvely plausible condition", as this assumption is "based partly on the possible non-totality of [a certain function] F and partly on an axiom equivalent to the totality of F".

Selected publications

Articles and lectures

  • N.C.A. da Costa, Sistemas Formais Inconsistentes. Curitiba, Brazil: Universidade Federal do Paraná, 1963.
  • N.C.A. da Costa, Review of the article by Corcoran, Hatcher, and Herring on variable-binding term operators, Zentralblat fur Mathematik, vol. 247, pp. 8–9, 1973.
  • N.C.A. da Costa, On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic 1974 ; 15: 497-510.
  • N.C.A. da Costa (with L. Dubikajtis), On Jaskowski's Discussive Logic. Non-Classical Logics, Model Theory and Computability, North-Holland Publishing Company, Amsterdam, pp. 37–56, 1977.
  • N.C.A. da Costa (with C. Mortensen), Notes on the theory of variable-binding term operators, History and Philosophy of Logic, vol.4, pp. 63–72, 1983.
  • N.C.A. da Costa, Pragmatic probability. Erkenntnis 1986; 25: 141-162.
  • N.C.A. da Costa (with Walter Carnielli), Paraconsistent deontic logics. Philosophia – The Philos. Quarterly of Israel, vol.16, numbers 3 and 4, pp. 293–305, 1988.
  • N.C.A. da Costa (with V.S. Subrahmanian), Paraconsistent logic as a formalism for reasoning about inconsistent knowledge bases. Artificial Intelligence in Medicine 1989; 1: 167-174.
  • N.C.A. da Costa (with F.A. Doria), Undecidability and incompleteness in classical mechanics, International J. Theoretical Physics, vol. 30 (1991), 1041-1073.
  • N.C.A. da Costa, Paraconsistent logic. In Stanisław Jaškowski Memorial Symposium, pp. 29–35. Department of Logic, Nicholas Copernicus University of Toruń. 1998.
  • N.C.A. da Costa (with O. Bueno and S. French), Is there a Zande Logic? History and Philosophy of Logic 1998; 19: 41-54.
  • N.C.A. da Costa (with O. Bueno and A.G. Volkov), Outline of a paraconsistent category theory. In P Weingartner (ed.), Alternative Logics: Do Sciences Need them? Berlin: Springer-Verlag, 2004, pp. 95–114.
  • N.C.A. da Costa (with F. A. Doria), Consequences of an exotic definition for P = NP. Applied Mathematics and Computation, vol. 145 (2003), 655-665, and Addendum to `Consequences...' . Applied Mathematics and Computation, vol. 172 (2006), 1364-1367.
  • N.C.A. da Costa (with F. A. Doria), Computing the future, in Computability, Complexity and Constructivity in Economic Analysis, ed. K. V. Velupillai, Blackwell, 2005.
  • N.C.A. da Costa (with F. A. Doria), Some thoughts on hypercomputation, Applied Mathematics and Computation, in press (2006).

Books

  • N.C.A. da Costa, Lógica Indutiva e Probabilidade. Hucitec-EdUSP, 2a. ed., São Paulo, 1993.
  • N.C.A. da Costa, Logique Classique et Non-Classique. Paris, Masson, 1997.
  • N.C.A. da Costa, O conhecimento científico. São Paulo, Discurso Editorial, 2a. Ed., 1999.
  • N.C.A. da Costa, J.M. Abe, J.I. da Silva Filho, A.C. Murolo and C.F.S. Leite Lógica Paraconsistente Applicada. São Paulo, Atlas, 1999.
  • N.C.A. da Costa and S. French, Science and Partial Truth: A Unitary Approach to Models and Scientific Reasoning. (Oxford Studies in Philosophy of Science), Oxford University Press, 2003.

Essays on N. C. A. da Costa

Nicola Grana, Sulla teoria delle valutazioni di N.C.A. da Costa. Naples: Liguori Editore, 1990. Pp. 75.

References

  1. ^ Schindler's review of the P = NP paper (Bulletin of Symbolic Logic, v. 10 no. 1, March 2004, p. 118f)

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Costa (surname) — Costa, sometimes Da Costa or da Costa, is an Italian (particularly in Liguria, Piedmont and Sardinia), Portuguese and Catalan surname. And, because of immigration, is common in Brazil and Argentina. It s also a surname chosen by the Jews, due to… …   Wikipedia

  • Newton Padua — Newton de Menezes Pádua (* 3. November 1894 in Rio de Janeiro, Todesdatum nicht bekannt) war ein brasilianischer Komponist. Padua studierte am Instituto Nacional de Música in Rio de Janeiro Cello, Dirigieren und Komposition bei Frederico… …   Deutsch Wikipedia

  • Newton de Menezes Pádua — (* 3. November 1894 in Rio de Janeiro, Todesdatum nicht bekannt) war ein brasilianischer Komponist. Padua studierte am Instituto Nacional de Música in Rio de Janeiro Cello, Dirigieren und Komposition bei Frederico Nascimento, Breno Niederberger,… …   Deutsch Wikipedia

  • Newton Pádua — Newton de Menezes Pádua (* 3. November 1894 in Rio de Janeiro; † 1966[1]) war ein brasilianischer Komponist. Padua studierte am Instituto Nacional de Música in Rio de Janeiro Cello, Dirigieren und Komposition bei Frederico Nascimento, Breno… …   Deutsch Wikipedia

  • Da Costa — The surname da Costa derives from the Portuguese word for coast . It may refer to:* Benjamin Mendes da Costa (1803 1868), English/Australian philanthropist * Emanuel Mendez da Costa (1717 – 1791), English botanist, naturalist, philosopher, and… …   Wikipedia

  • Isaac Newton Lewis — (12 de octubre de 1858 New Salem, Pennsylvania 9 de noviembre de 1931 Hoboken, New Jersey) fue un oficial del ejército de los Estados Unidos e inventor de la mundialmente famosa ametralladora Lewis , utilizada por numerosos ejércitos en los… …   Wikipedia Español

  • Puente Newton Navarro — Saltar a navegación, búsqueda Puente Newton Navarro País …   Wikipedia Español

  • Fórmulas de Newton-Cotes — Saltar a navegación, búsqueda En análisis numérico las fórmulas de Newton Cotes (nombradas así por Isaac Newton y Roger Cotes) son un grupo de fórmulas de integración numérica de tipo interpolatorio, en las cuales se evalúa la función en puntos… …   Wikipedia Español

  • Fórmulas de Newton–Cotes — En análisis numérico las fórmulas de Newton Cotes (nombradas así por Isaac Newton y Roger Cotes) son un grupo de fórmulas de integración numérica de tipo interpolatorio, en las cuales se evalúa la función en puntos equidistantes, para así hallar… …   Wikipedia Español

  • Gal Costa — El texto que sigue es una traducción defectuosa o incompleta. Si quieres colaborar con Wikipedia, busca el artículo original y mejora o finaliza esta traducción. Puedes dar aviso al autor principal del artículo pegando el siguiente código en su… …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”