- Fatty acid metabolism
Fatty acid s are an important source ofenergy for many organisms. Excess glucose can be stored efficiently as fat.Triglyceride s yield more than twice as much energy for the same mass as docarbohydrate s orprotein s. Allcell membrane s are built up ofphospholipids , each of which contains two fatty acids. Fatty acids are also used for protein modification. The metabolism of fatty acids, therefore, consists of catabolic processes which generate energy andprimary metabolite s from fatty acids, andanabolic processes which create biologically important molecules from fatty acids and other dietarycarbon sources.Overview
*
Lipolysis is carried out bylipases .
*Once freed fromglycerol , free fatty acids can enter blood and muscle fiber by diffusion.
*Beta oxidation splits long carbon chains of the fatty acid intoacetyl CoA , which can eventually enter the TCA cycle.Briefly, β-oxidation or lipolysis of free fatty acids is as follows:
#Dehydrogenation by
acyl-CoA dehydrogenase , yielding 1 FADH2
#Hydration byenoyl-CoA hydratase
#Dehydrogenation by3-hydroxyacyl-CoA dehydrogenase , yielding 1 NADH
#Cleavage by thiolase, yielding 1acetyl-CoA and a fatty acid that has now been shortened by 2 carbons (acyl-CoA )This cycle repeats until the FFA has been completely reduced to
acetyl-CoA or, in the case of fatty acids with odd numbers of carbon atoms,acetyl-CoA and 1 mol ofpropionyl-CoA per mol of fatty acid.Fatty acids as an energy source
Fatty acids, stored as triglycerides in an organism, are an important source of energy because they are both reduced and
anhydrous . The energy yield from agram of fatty acids is approximately 9 Kcal (39 kJ), compared to 4 Kcal/g (17 kJ/g) for carbohydrates. Since thehydrocarbon portion of fatty acids ishydrophobic , thesemolecule s, can be stored in a relativelyanhydrous (water free) environment. Carbohydrates, on the other hand, are more highly hydrated. For example, 1 g ofglycogen can bind approximately 2 g ofwater , which translates to 1.33 Kcal/g (4 Kcal/3 g). This means that fatty acids can hold more than six times the amount of energy. Put another way, if the human body relied on carbohydrates to store energy, then a person would need to carry 67.5 lb (31 kg) of hydrated glycogen to have the energy equivalent to 10 lb (5 kg) offat .Hibernating animals provide a good example for utilizing fat reserves as fuel. For example, bears hibernate for about 7 months and during this entire period the energy is derived from degradation of fat stores.Ruby-throated Hummingbird s fly non-stop between New England and West Indies (approximately 2400 km) at a speed of 40 km/h for 60 hours. This is possible only due to the stored fat.Digestion and transport
Fatty acids are usually ingested as
triglyceride s, which cannot be absorbed by theintestine . They are broken down into free fatty acids and monoglycerides by pancreatic lipase, which forms a 1:1 complex with a protein called colipase which is necessary for its activity. The activated complex can only work at a water-fat interface: it is therefore essential that fatty acids (FA) be emulsified bybile salt s for optimal activity of these enzymes. People who have had theirgallbladder removed due to gall stones consequently have great difficulty digesting fatsFact|date=April 2008. Most are absorbed as free fatty acids and 2-monoglycerides, but a small fraction is absorbed as free glycerol and as diglycerides. Once across the intestinal barrier, they are reformed into triglycerides and packaged intochylomicron s or liposomes, which are released into thelymph system and then into theblood . Eventually, they bind to the membranes ofhepatocyte s,adipocyte s ormuscle fiber s, where they are either stored or oxidized for energy. Theliver acts as a major organ for fatty acid treatment, processing chylomicron remnants and liposomes into the variouslipoprotein forms, namely VLDL and LDL. Fatty acids synthesized by the liver are converted to triglyceride and transported to the blood as VLDL. In peripheral tissues, lipoprotein lipase digests part of the VLDL into LDL and free fatty acids, which are taken up for metabolism. This is done by the removal of the triglycerides contained in the VLDL. What is left of the VLDL absorbs cholesterol from other circulating lipoproteins, becoming LDLs. LDL is absorbed viaLDL receptor s. This provides a mechanism for absorption of LDL into the cell, and for its conversion into free fatty acids, cholesterol, and other components of LDL. The liver controls the concentration of cholesterol in the blood by removing LDL. Another type of lipoprotein known as High density lipoprotein, or HDL collects cholesterol, glycerol and fatty acids from the blood and transport them to the liver. In summary, Chylomicrons carry diet-derived lipids to body cells; VLDL carry lipids synthesized by the liver to body cells; LDL carry cholesterol round the body; and HDL carry cholesterol from the body back to the liver for breakdown and excretion.When blood sugar is low,
glucagon signals the adipocytes to activatehormone sensitive lipase , and to convert triglycerides into free fatty acids. These have very low solubility in the blood, typically about 1 μM. However, the most abundant protein in blood,serum albumin , binds free fatty acids, increasing their effective solubility to ~ 1 mM. Thus,serum albumin transports fatty acids to organs such asmuscle andliver for oxidation when blood sugar is low.Oxidation
Fatty acid degradation is the process in which
fatty acids are broken down, resulting in release of energy. It includes three major steps:*Activation and transport into
mitochondria ,
*β-oxidation
*Electron transport chain Fatty acids are transported across the
outer mitochondrial membrane bycarnitine-palmitoyl transferase I (CPT-I), and then couriered across theinner mitochondrial membrane bycarnitine [De Vivo, D. C. "et al." (1998) "L-Carnitine Supplementation in Childhood Epilepsy: Current Perspectives. "Epilepsia". Vol. 39(11), p.1216-1225. [http://www.blackwell-synergy.com/doi/abs/10.1111/j.1528-1157.1998.tb01315.x] ] . Once inside themitochondrial matrix , fatty acyl-carnitine reacts withcoenzyme A to release the fatty acid and produceacetyl-CoA . CPT-I is believed to be therate limiting step in fatty acid oxidation.Once inside the mitochondrial matrix, fatty acids undergo
β-oxidation . During this process, two-carbon moleculesacetyl-CoA are repeatedly cleaved from the fatty acid. Acetyl-CoA can then enter the TCA cycle, which producesNADH andFADH . NADH and FADH are subsequently used in theelectron transport chain to produceATP , the energy currency of the cell.ynthesis
:"See
Fatty acid ":"SeeFatty acid synthesis "Regulation and control
It has long been held that hormone-sensitive lipase (HSL) is the enzyme that hydrolyses triacylglycerides to free fatty acids from fats (lipolysis). However, more recently it has been shown that at most HSL converts triacylglycerides to monoglycerides and free fatty acids. Monoglycerides are hydrolyzed by monoglyceride lipase; adipose triglyceride lipase may have a special role in converting triacylglycerides to diacylglycerides, while diacylglycerides are the best substrate for HSL. [Zechner R., Strauss J.G., Haemmerle G., Lass A., Zimmermann R. (2005) Lipolysis: pathway under construction. Curr. Opin. Lipidol. 16, 333-340.] . HSL is regulated by the hormones
insulin ,glucagon ,norepinephrine , andepinephrine .Glucagon is associated with low blood glucose, and epinephrine is associated with increased metabolic demands. In both situations, energy is needed, and the oxidation of fatty acids is increased to meet that need. Glucagon, norepinephrine, and epinephrine bind to the
G protein-coupled receptor , which activatesadenylate cyclase to producecyclic AMP . cAMP consequently activates protein kinase A, which phosphorylates (and activates) hormone-sensitive lipase. When blood glucose is high, lipolysis is inhibited by insulin. Insulin activates protein phosphatase 2A, which dephosphorylates HSL, thereby inhibiting its activity. Insulin also activates the enzymephosphodiesterase , which break down cAMP and stop the re-phosphorylation effects of protein kinase A.For the regulation and control of metabolic reactions involving fat synthesis, see
lipogenesis .ee also
*
Fatty acid synthase
*Essential fatty acid
*List of fatty acid metabolism disorders References
Berg, J.M., et al., "Biochemistry". 5th ed. 2002, New York: W.H. Freeman. 1 v. (various pagings).
External links
* [http://www2.ufp.pt/~pedros/bq/fatty.htm The chemical logic behind the metabolism of fatty acid]
Wikimedia Foundation. 2010.