- Equilibrium fractionation
Equilibrium isotope
fractionation is the partial separation ofisotopes between two or more substances inchemical equilibrium . Equilibrium fractionation is strongest at low temperatures, and (along with kinetic isotope effects) forms the basis of the most widely used isotopic paleothermometers (or climate proxies): D/H and 18O/16O records fromice cores , and 18O/16O records from calcium carbonate. It is thus important for the construction of geologic temperature records. Isotopic fractionations attributed to equilibrium processes have been observed in many elements, from hydrogen (D/H) to uranium (238U/235U). In general, the light elements (especiallyhydrogen ,boron ,carbon ,nitrogen ,oxygen andsulfur ) are most susceptible to fractionation, and their isotopes tend to be separated to a greater degree than heavier elements.Most equilibrium fractionations are thought to result from the reduction in vibrational energy (especially
zero-point energy ) when a more massive isotope is substituted for a less massive one. This leads to higher concentrations of the massive isotopes in substances where the vibrational energy is most sensitive to isotope substitution, i.e., those with the highest bond force constants.In a reaction involving the exchange of two isotopes, lX and hX, of element “X” in molecules AX and BX,
:
each reactant molecule is identical to a product except for the distribution of isotopes (i.e., they are isotopologues). The amount of isotopic fractionation in an exchange reaction can be expressed as a fractionation factor:
:
indicates that the isotopes are distributed evenly between AX and BX, with no isotopic fractionation. indicates that hX is concentrated in substance AX, and indicates hX is concentrated in substance BX. is closely related to the
equilibrium constant (Keq)::
where is the product of the rotational symmetry numbers of the products (right side of the exchange reaction), is the product of the rotational symmetry numbers of the reactants (left side of the exchange reaction), and is the number of atoms exchanged.
An example of equilibrium isotope fractionation is the concentration of heavy isotopes of
oxygen in liquidwater , relative towater vapor ,:
At 20oC, the equilibrium fractionation factor for this reaction is
:
Equilibrium fractionation is a type of mass-dependent isotope fractionation, while
mass-independent fractionation is usually assumed to be a non-equilibrium process.ee also
Stable isotope Isotope geochemistry Kinetic isotope effect Isotope analysis
δ18OKinetic fractionation Mass-independent fractionation References
Chacko T., Cole D.R., and Horita J. (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Reviews in Mineralogy and Geochemistry, v. 43, p. 1-81.
Horita J. and Wesolowski D.J. (1994) Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochimica et Cosmochimica Acta, v. 58, p. 3425-2437.
Wikimedia Foundation. 2010.