- Demand paging
-
In computer operating systems, demand paging (as opposed to anticipatory paging) is an application of virtual memory. In a system that uses demand paging, the operating system copies a disk page into physical memory only if an attempt is made to access it (i.e., if a page fault occurs). It follows that a process begins execution with none of its pages in physical memory, and many page faults will occur until most of a process's working set of pages is located in physical memory. This is an example of lazy loading techniques.
Contents
Advantages
Demand paging, as opposed to loading all pages immediately:
- Only loads pages that are demanded by the executing process.
- As there is more space in main memory, more processes can be loaded reducing context switching time which utilizes large amounts of resources.
- Less loading latency occurs at program startup, as less information is accessed from secondary storage and less information is brought into main memory.
- Does not need extra hardware support than what paging needs, since protection fault can be used to get page fault.
Disadvantages
- Individual programs face extra latency when they access a page for the first time. So demand paging may have lower performance than anticipatory paging algorithms such as prepaging.
- Programs running on low-cost, low-power embedded systems may not have a memory management unit that supports page replacement.
- Memory management with page replacement algorithms becomes slightly more complex.
- Possible security risks, including vulnerability to timing attacks; see Percival 2005 Cache Missing for Fun and Profit (specifically the virtual memory attack in section 2).
Basic concept
Demand paging follows that pages should only be brought into memory if the executing process demands them. This is often referred to as lazy evaluation as only those pages demanded by the process are swapped from secondary storage to main memory. Contrast this to pure swapping, where all memory for a process is swapped from secondary storage to main memory during the process startup.
When a process is to be swapped into main memory for processing, the pager guesses which pages will be used prior to the process being swapped out again. The pager will only load these pages into memory. This process avoids loading pages that are unlikely to be used and focuses on pages needed during the current process execution period. Therefore, not only is unnecessary page load during swapping avoided but we also try to preempt which pages will be needed and avoid loading pages during execution.
Commonly, to achieve this process a page table implementation is used. The page table maps logical memory to physical memory. The page table uses a bitwise operator to mark if a page is valid or invalid. A valid page is one that currently resides in main memory. An invalid page is one that currently resides in secondary memory. When a process tries to access a page, the following steps are generally followed:
- Attempt to access page.
- If page is valid (in memory) then continue processing instruction as normal.
- If page is invalid then a page-fault trap occurs.
- Check if the memory reference is a valid reference to a location on secondary memory. If not, the process is terminated (illegal memory access). Otherwise, we have to page in the required page.
- Schedule disk operation to read the desired page into main memory.
- Restart the instruction that was interrupted by the operating system trap.
See also
References
- Tanenbaum, Andrew S. Operating Systems: Design and Implementation (Second Edition). New Jersey: Prentice-Hall 1997.
Memory management Manual memory management Virtual memory Demand paging • Page table • PagingHardware Garbage collection ImplementationsBoehm garbage collector • Garbage-first collectorMemory segmentation Memory safety Issues Other Automatic variable • International Symposium on Memory Management • Region-based memory managementCategories:
Wikimedia Foundation. 2010.