Legendre chi function

Legendre chi function

In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given by

:chi_ u(z) = sum_{k=0}^infty frac{z^{2k+1{(2k+1)^ u}.

As such, it resembles the Dirichlet series for the polylogarithm, and, indeed, is trivially expressible in terms of the polylogarithm as

:chi_ u(z) = frac{1}{2}left [operatorname{Li}_ u(z) - operatorname{Li}_ u(-z) ight]

The Legendre chi function appears as the discrete fourier transform, with respect to the order ν, of the Hurwitz zeta function, and also of the Euler polynomials, with the explicit relationships given in those articles.

The Legendre chi function is a special case of the Lerch transcendent, and is given by :chi_n(z)=2^{-n}z,Phi (z^2,n,1/2).,

References

*
* Djurdje Cvijović and Jacek Klinowski, " [http://www.ams.org/journal-getitem?pii=S0025-5718-99-01091-1 Values of the Legendre chi and Hurwitz zeta functions at rational arguments] ", Mathematics of Computation 68 (1999), 1623-1630.
*cite web|author=Djurdje Cvijović|year= 2006
url=http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK2-4MG1X3C-6&_user=1793225&_coverDate=11%2F30%2F2006&_alid=512412473&_rdoc=2&_fmt=summary&_orig=search&_cdi=6894&_sort=d&_docanchor=&view=c&_acct=C000053038&_version=1&_urlVersion=0&_userid=1793225&md5=d64e4c1e1d59beb223eefd865b64e422|title="Integral representations of the Legendre chi function"|publisher=Elsevier
accessdate=December 15|accessyear=2006


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Hurwitz zeta function — In mathematics, the Hurwitz zeta function, named after Adolf Hurwitz, is one of the many zeta functions. It is formally defined for complex arguments s with Re( s )>1 and q with Re( q )>0 by:zeta(s,q) = sum {n=0}^infty frac{1}{(q+n)^{sThis series …   Wikipedia

  • Lerch zeta function — In mathematics, the Lerch zeta function, sometimes called the Hurwitz Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Mathias Lerch [http://www groups.dcs.st… …   Wikipedia

  • Legendresche Chi-Funktion — Die Legendresche χ Funktion (Chi Funktion) ist in der Mathematik eine spezielle Funktion, die folgendermaßen definiert ist: Sie lässt sich auch mit dem Polylogarithmus Liν(z) ausdrücken: Inhaltsverzeichnis …   Deutsch Wikipedia

  • Arithmetic function — In number theory, an arithmetic (or arithmetical) function is a real or complex valued function ƒ(n) defined on the set of natural numbers (i.e. positive integers) that expresses some arithmetical property of n. [1] An example of an arithmetic… …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • List of mathematical functions — In mathematics, several functions or groups of functions are important enough to deserve their own names. This is a listing of pointers to those articles which explain these functions in more detail. There is a large theory of special functions… …   Wikipedia

  • Polylogarithm — Not to be confused with polylogarithmic. In mathematics, the polylogarithm (also known as Jonquière s function) is a special function Lis(z) that is defined by the infinite sum, or power series: It is in general not an elementary function, unlike …   Wikipedia

  • Хи-функция Лежандра — это специальная функция, названная по имени французского математика Адриен Мари Лежандра. Хи функция Лежандра определяется рядом Тейлора также являющимся рядом Дирихле: Таким образом Хи функция Лежандра тривиально выражается через полилогарифм:… …   Википедия

  • Bernoulli polynomials — In mathematics, the Bernoulli polynomials occur in the study of many special functions and in particular the Riemann zeta function and the Hurwitz zeta function. This is in large part because they are an Appell sequence, i.e. a Sheffer sequence… …   Wikipedia

  • Función polilogarítmica — El polilogaritmo (también conocido como función de Jonquière) es una función especial definida por la siguiente serie: Esta no es, en general, una función elemental, aunque esté relacionada con la función logarítmica. La definición dada arriba es …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”