- Legendre chi function
In
mathematics , the Legendre chi function is aspecial function whoseTaylor series is also aDirichlet series , given by:
As such, it resembles the Dirichlet series for the
polylogarithm , and, indeed, is trivially expressible in terms of the polylogarithm as:
The Legendre chi function appears as the
discrete fourier transform , with respect to the order ν, of theHurwitz zeta function , and also of theEuler polynomial s, with the explicit relationships given in those articles.The Legendre chi function is a special case of the
Lerch transcendent , and is given by :References
*
* Djurdje Cvijović and Jacek Klinowski, " [http://www.ams.org/journal-getitem?pii=S0025-5718-99-01091-1 Values of the Legendre chi and Hurwitz zeta functions at rational arguments] ", Mathematics of Computation 68 (1999), 1623-1630.
*cite web|author=Djurdje Cvijović|year= 2006
url=http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK2-4MG1X3C-6&_user=1793225&_coverDate=11%2F30%2F2006&_alid=512412473&_rdoc=2&_fmt=summary&_orig=search&_cdi=6894&_sort=d&_docanchor=&view=c&_acct=C000053038&_version=1&_urlVersion=0&_userid=1793225&md5=d64e4c1e1d59beb223eefd865b64e422|title="Integral representations of the Legendre chi function"|publisher=Elsevier
accessdate=December 15|accessyear=2006
Wikimedia Foundation. 2010.