Debye length

Debye length

In plasma physics, the Debye length (also called Debye radius), named after the Dutch physicist and physical chemist Peter Debye, is the scale over which mobile charge carriers (e.g. electrons) screen out electric fields in plasmas and other conductors. In other words, the Debye length is the distance over which significant charge separation can occur. A Debye sphere is a volume whose radius is the Debye length, in which there is a sphere of influence, and outside of which charges are screened. The notion of Debye length plays an important role in plasma physics, electrolytes and colloids (DLVO theory).

Contents

Physical origin

The Debye length arises naturally in the thermodynamic description of large systems of mobile charges. In a system of N different species of charges, the j-th species carries charge qj and has concentration n_j(\mathbf{r}) at position \mathbf{r}. According to the so-called "primitive model", these charges are distributed in a continuous medium that is characterized only by its relative static permittivity, εr. This distribution of charges within this medium gives rise to an electric potential \Phi(\mathbf{r}) that satisfies Poisson's equation:

 \nabla^2 \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_r \varepsilon_0} \, \sum_{j = 1}^N q_j \, n_j(\mathbf{r}),

where ε0 is the electric constant.

The mobile charges not only establish \Phi(\mathbf{r}) but also move in response to the associated Coulomb force, - q_j \, \nabla \Phi(\mathbf{r}). If we further assume the system to be in thermodynamic equilibrium with a heat bath at absolute temperature T, then the concentrations of discrete charges, n_j(\mathbf{r}), may be considered to be thermodynamic (ensemble) averages and the associated electric potential to be a thermodynamic mean field. With these assumptions, the concentration of the j-th charge species is described by the Boltzmann distribution,

 n_j(\mathbf{r}) = n_j^0 \, \exp\left( - \frac{q_j \, \Phi(\mathbf{r})}{k_B T} \right),

where kB is Boltzmann's constant and where n_j^0 is the mean concentration of charges of species j.

Identifying the instantaneous concentrations and potential in the Poisson equation with their mean-field counterparts in Boltzmann's distribution yields the Poisson-Boltzmann equation:

 \nabla^2 \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_r \varepsilon_0} \, \sum_{j = 1}^N q_j n_j^0 \, \exp\left(- \frac{q_j \, \Phi(\mathbf{r})}{k_B T} \right).

Solutions to this nonlinear equation are known for some simple systems. Solutions for more general systems may be obtained in the high-temperature (weak coupling) limit, q_j \, \Phi(\mathbf{r}) \ll k_B T, by Taylor expanding the exponential:

 \exp\left(- \frac{q_j \, \Phi(\mathbf{r})}{k_B T} \right) \approx 
1 - \frac{q_j \, \Phi(\mathbf{r})}{k_B T}.

This approximation yields the linearized Poisson-Boltzmann equation

 \nabla^2 \Phi(\mathbf{r}) =
\left(\sum_{j = 1}^N \frac{n_j^0 \, q_j^2}{\varepsilon_r \varepsilon_0 \, k_B T} \right)\, \Phi(\mathbf{r}) - \frac{1}{\varepsilon_r \varepsilon_0} \, \sum_{j = 1}^N n_j^0 q_j

which also is known as the Debye-Hückel equation:[1][2][3][4][5] The second term on the right-hand side vanishes for systems that are electrically neutral. The term in parentheses has the units of an inverse length squared and by dimensional analysis leads to the definition of the characteristic length scale

 \lambda_D = 
\left(\frac{\varepsilon_r \varepsilon_0 \, k_B T}{\sum_{j = 1}^N n_j^0 \, q_j^2}\right)^{1/2}

that commonly is referred to as the Debye-Hückel length. As the only characteristic length scale in the Debye-Hückel equation, λD sets the scale for variations in the potential and in the concentrations of charged species. All charged species contribute to the Debye-Hückel length in the same way, regardless of the sign of their charges.

The Debye-Hückel length length may be expressed in terms of the Bjerrum length λB as

 \lambda_D =
\left(4 \pi \, \lambda_B \, \sum_{j = 1}^N n_j^0 \, z_j^2\right)^{-1/2},

where zj = qj / e is the integer charge number that relates the charge on the j-th ionic species to the elementary charge e.

Typical values

In space plasmas where the electron density is relatively low, the Debye length may reach macroscopic values, such as in the magnetosphere, solar wind, interstellar medium and intergalactic medium (see table):

Plasma Density
ne(m-3)
Electron temperature
T(K)
Magnetic field
B(T)
Debye length
λD(m)
Solar core 1032 107 -- 10−11
Tokamak 1020 108 10 10−4
Gas discharge 1016 104 -- 10−4
Ionosphere 1012 103 10−5 10−3
Magnetosphere 107 107 10−8 102
Solar wind 106 105 10−9 10
Interstellar medium 105 104 10−10 10
Intergalactic medium 1 106 -- 105
Source: Chapter 19: The Particle Kinetics of Plasma
http://www.pma.caltech.edu/Courses/ph136/yr2004/

Hannes Alfven pointed out that: "In a low density plasma, localized space charge regions may build up large potential drops over distances of the order of some tens of the Debye lengths. Such regions have been called electric double layers. An electric double layer is the simplest space charge distribution that gives a potential drop in the layer and a vanishing electric field on each side of the layer. In the laboratory, double layers have been studied for half a century, but their importance in cosmic plasmas has not been generally recognized."

Debye length in a plasma

In a plasma, the background medium may be treated as the vacuum (εr = 1), and the Debye length is

 \lambda_D = \sqrt{\frac{\varepsilon_0 k_B/q_e^2}{n_e/T_e+\sum_{ij} j^2n_{ij}/T_i}}

where

λD is the Debye length,
ε0 is the permittivity of free space,
kB is the Boltzmann constant,
qe is the charge of an electron,
Te and Ti are the temperatures of the electrons and ions, respectively,
ne is the density of electrons,
nij'is the density of atomic species i, with positive ionic charge jqe

The ion term is often dropped, giving

 \lambda_D = \sqrt{\frac{\varepsilon_0 k_B T_e}{n_e q_e^2}}

although this is only valid when the mobility of ions is negligible compared to the process's timescale.[6]

Debye length in an electrolyte

In an electrolyte or a colloidal dispersion, the Debye length[7] is usually denoted with symbol κ−1

 \kappa^{-1} = \sqrt{\frac{\varepsilon_r \varepsilon_0 k_B T}{2 N_A e^2 I}}

where

I is the ionic strength of the electrolyte, and here the unit should be mole/m3,
ε0 is the permittivity of free space,
εr is the dielectric constant,
kB is the Boltzmann constant,
T is the absolute temperature in kelvins,
NA is the Avogadro number.
e is the elementary charge,

or, for a symmetric monovalent electrolyte,

 \kappa^{-1} = \sqrt{\frac{\varepsilon_r \varepsilon_0 R T}{2 F^2 C_0}}

where

R is the gas constant,
F is the Faraday constant,
C0 is the molar concentration of the electrolyte.

Alternatively,

 \kappa^{-1} = \frac{1}{\sqrt{8\pi \lambda_B N_A I}}

where

λB is the Bjerrum length of the medium.

For water at room temperature, λB ≈ 0.7 nm.

At room temperature (25 °C), one can consider in water the relation [8] :

 \kappa^{-1}(\mathrm{nm}) = \frac{0.304}{\sqrt{I(\mathrm{M})}}

where

κ−1 is expressed in nanometers (nm)
I is the ionic strength expressed in molar (M or mol/L)

Debye length in silicon

The Debye length has become increasingly significant in the modeling of solid state devices as improvements in lithographic technologies have enabled smaller geometries.[9][10][11]

The Debye length of silicon is given:

 \mathit{L}_D = \sqrt{\frac{\varepsilon_{\mathrm{Si}} k_B T}{q^2N_d}}

where

εSi is the dielectric constant of silicon,
kB is the Boltzmann's constant,
T is the absolute temperature in kelvins,
q is the elementary charge, and
Nd is the density of donors in a substrate.

When doping profiles exceed the Debye length, majority carriers no longer behave according to the distribution of the dopants. Instead, a measure of the profile of the doping gradients provides an “effective” profile that better matches the profile of the majority carrier density.

References

  1. ^ Kirby BJ.. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. http://www.kirbyresearch.com/textbook. 
  2. ^ Li D (2004). Electrokinetics in Microfluidics. 
  3. ^ PC Clemmow & JP Dougherty (1969). Electrodynamics of particles and plasmas. Redwood City CA: Addison-Wesley. pp. §7.6.7, p. 236 ff.. ISBN 0201479869. http://books.google.com/books?id=SBNNzUrTjecC&pg=PP1&dq=particles+plasmas+inauthor:Clemmow#PPA236,M1. 
  4. ^ RA Robinson &RH Stokes (2002). Electrolyte solutions. Mineola NY: Dover Publications. p. 76. ISBN 0486422259. http://books.google.com/books?id=6ZVkqm-J9GkC&pg=PR3#PPA76,M1. 
  5. ^ See DC Brydges & Ph A Martin Coulomb Systems at Low Density: A Review
  6. ^ I. H. Hutchchinson - Principles of plasma diagnostics; ISBN 0-521-38583-0
  7. ^ Russel, W.B., Saville, D.A. and Schowalter, W.R. Colloidal Dispersions, Cambridge University Press, 1989
  8. ^ Israelachvili, J., Intermolecular and Surface Forces, Academic Press Inc., 1985, ISBN 0-12-375181-0
  9. ^ Stern, Eric; Robin Wagner, Fred J. Sigworth, Ronald Breaker, Tarek M. Fahmy, Mark A. Reed (2007-11-01). "Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors". Nano Letters 7 (11): 3405–3409. doi:10.1021/nl071792z. 
  10. ^ Guo, Lingjie; Effendi Leobandung, Stephen Y. Chou (1997). "A room-temperature silicon single-electron metal–oxide–semiconductor memory with nanoscale floating-gate and ultranarrow channel". Applied Physics Letters 70 (7): 850. doi:10.1063/1.118236. ISSN 0003-6951. http://link.aip.org/link/APPLAB/v70/i7/p850/s1&Agg=doi. Retrieved 2010-10-25. 
  11. ^ Tiwari, Sandip; Farhan Rana, Kevin Chan, Leathen Shi, Hussein Hanafi (1996). "Single charge and confinement effects in nano-crystal memories". Applied Physics Letters 69 (9): 1232. doi:10.1063/1.117421. ISSN 0003-6951. http://link.aip.org/link/APPLAB/v69/i9/p1232/s1&Agg=doi. Retrieved 2010-10-25. 

Further reading

  • Goldston & Rutherford (1997). Introduction to Plasma Physics. Institute of Physics Publishing, Philadelphia. 
  • Lyklema (1993). Fundamentals of Interface and Colloid Science. Academic Press, NY. 

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Debye length — Debajaus ekranavimo nuotolis statusas T sritis Standartizacija ir metrologija apibrėžtis Nuotolis, per kurį laidžiojoje terpėje (plazmoje, taip pat ir kietojo kūno plazmoje, elektrolito tirpale), turinčioje teigiamųjų ir neigiamųjų dalelių,… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Debye length — Debajaus ekranavimo nuotolis statusas T sritis fizika atitikmenys: angl. Debye length; Debye’s screening distance; Debye’s shielding distance vok. Debye Abschirmungslänge, f; Debye Länge, f; Debye Radius, m rus. дебаевская длина экранирования, f; …   Fizikos terminų žodynas

  • Debye length — Debajaus ekranavimo spindulys statusas T sritis fizika atitikmenys: angl. Debye distance; Debye length; Debye screening thickness vok. Debye Länge, f; Debye Radius, m; Debyescher Abschirmradius, m rus. дебаевский радиус экранирования, m; длина… …   Fizikos terminų žodynas

  • Debye length — Debajaus ilgis statusas T sritis radioelektronika atitikmenys: angl. Debye length vok. Debye Länge, f rus. дебаевская длина, f; длина Дебая, f pranc. longueur de Debye, f …   Radioelektronikos terminų žodynas

  • Debye length — Debajaus ekranavimo spindulys statusas T sritis chemija apibrėžtis Elektringosios dalelės elektrostatinio veikimo nuotolis elektrolite. atitikmenys: angl. Debye distance; Debye length rus. дебаевский радиус; радиус Дебая …   Chemijos terminų aiškinamasis žodynas

  • Debye sheath — The Debye sheath (also electrostatic sheath) is a layer in a plasma which has a greater density of positive ions, and hence an overall excess positive charge, that balances an opposite negative charge on the surface of a material with which it is …   Wikipedia

  • Debye-Abschirmlänge — Debajaus ekranavimo nuotolis statusas T sritis Standartizacija ir metrologija apibrėžtis Nuotolis, per kurį laidžiojoje terpėje (plazmoje, taip pat ir kietojo kūno plazmoje, elektrolito tirpale), turinčioje teigiamųjų ir neigiamųjų dalelių,… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Debye-Abschirmungslänge — Debajaus ekranavimo nuotolis statusas T sritis Standartizacija ir metrologija apibrėžtis Nuotolis, per kurį laidžiojoje terpėje (plazmoje, taip pat ir kietojo kūno plazmoje, elektrolito tirpale), turinčioje teigiamųjų ir neigiamųjų dalelių,… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Debye-Länge — Debajaus ekranavimo nuotolis statusas T sritis Standartizacija ir metrologija apibrėžtis Nuotolis, per kurį laidžiojoje terpėje (plazmoje, taip pat ir kietojo kūno plazmoje, elektrolito tirpale), turinčioje teigiamųjų ir neigiamųjų dalelių,… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Debye-Radius — Debajaus ekranavimo nuotolis statusas T sritis Standartizacija ir metrologija apibrėžtis Nuotolis, per kurį laidžiojoje terpėje (plazmoje, taip pat ir kietojo kūno plazmoje, elektrolito tirpale), turinčioje teigiamųjų ir neigiamųjų dalelių,… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”