Elongated square gyrobicupola

Elongated square gyrobicupola

Infobox Polyhedron


Polyhedron_Type=Johnson
"J"36 - J37 - J38
Face_List=8 triangles
2+2.8 squares
Edge_Count=48
Vertex_Count=24
Symmetry_Group="D"4d
Vertex_List=8+16(3.43)
Dual=-
Property_List=convex, singular vertex figure
In geometry, the elongated square gyrobicupola is one of the Johnson solids ("J"37). The 92 Johnson solids were named and described by Norman Johnson in 1966.

As the name suggests, it can be constructed by elongating a square gyrobicupola ("J"29) and inserting an octagonal prism between its two halves. The resulting solid is locally vertex-regular — the arrangement of the four faces incident on any vertex is the same for all vertices; this is unique among the Johnson solids. However, it is not truly vertex-transitive, and consequently not one of the Archimedean solids, as there are pairs of vertices such that there is no isometry of the solid which maps one into the other. Essentially, two types of vertices can be distinguished by their "neighbors of neighbors." Another way to see that the polyhedron is not vertex-regular is to note that there is exactly one belt of eight squares around its equator, which distinguishes vertices on the belt from vertices on either side.

The solid can also be seen as the result of twisting one of the square cupolae ("J"4) on a rhombicuboctahedron (one of the Archimedean solids) by 45 degrees. Its similarity to the rhombicuboctahedron gives it the alternative name pseudorhombicuboctahedron.

Symmetry

With faces colored by its "D"4d symmetry, it can look like this:

There's 8 (green) squares around its equator, 4 and 4 (yellow) squares above and below, and one (blue) square on each pole.

External links

*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Square orthobicupola — Infobox Polyhedron with net Polyhedron Type=Johnson J 27 J28 J29 Face List=8 triangles 2+8 squares Edge Count=32 Vertex Count=16 Symmetry Group=D4h Vertex List=8(32.42) 8(3.43) Dual= Property List= In geometry, the square orthobicupola is one of… …   Wikipedia

  • Johnson solid — The elongated square gyrobicupola (J37), a Johnson solid …   Wikipedia

  • Johnson-Körper — Die Johnson Körper sind eine Klasse geometrischer Körper. Inhaltsverzeichnis 1 Eigenschaften 2 Liste 2.1 Pyramiden, Kuppeln und Rotunden 2.2 modifizierte Pyramiden …   Deutsch Wikipedia

  • Polyèdre de Johnson — Solide de Johnson La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Polyèdres de Johnson — Solide de Johnson La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Solide de Johnson — La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Solide de johnson — La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Sólido de Johnson — La girobicúpula cuadrada elongada (J37), un sólido de Johnson …   Wikipedia Español

  • List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… …   Wikipedia

  • Rhombicuboctahedron — The rhombicuboctahedron, or small rhombicuboctahedron, is an Archimedean solid with eight triangular and eighteen square faces. There are 24 identical vertices, with one triangle and three squares meeting at each. Note that six of the squares… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”