- Flap (aircraft)
Flaps are hinged surfaces on the trailing edge of the wings of a
fixed-wing aircraft . As flaps are extended, the stalling speed of the aircraft is reduced. Flaps are also used on the leading edge of the wings of some high-speed jet aircraft, where they may be called slats or Krueger Flaps.Flaps reduce the stalling speed by increasing the camber of the wing and thereby increasing the maximum
lift coefficient . Some trailing edge flaps also increase the area of the wing and, for any given aircraft weight, this reduces the stalling speed. The Fowler flap is an example of one which increases the area of the wing.Extending the flaps also increases the
drag coefficient of the aircraft so, for any given weight and airspeed, flaps cause higher drag. Flaps increase thedrag coefficient of an aircraft because of higherinduced drag caused by the distortedplanform of the wing with flaps extended. (Induced drag is a minimum on a wing with elliptical planform.) Some flaps increase the wetted area of the wing and, for any given speed, this also increases theparasitic drag component of total drag.Depending on the aircraft type, flaps may be partially extended for
takeoff . With light aircraft, use of flaps for takeoff may be optional and will depend on the method of takeoff (e.g., short field, soft field, normal, etc.) When flaps are partially extended for takeoff it is to give the aircraft a slower stalling speed but with little increase in drag. A slower stalling speed allows the aircraft to take off in a shorter runway distance. Flaps are usually fully extended forlanding to give the aircraft a slower stalling speed so the approach to landing can be flown more slowly, allowing the aircraft to land in a shorter runway distance. The higher drag associated with fully extended flaps allows a steeper approach to the landing site. This is the benefit of the higher drag coefficient of fully extended flaps.Some gliders not only use flaps when landing but also in flight to optimize the camber of the wing for the chosen speed. When thermalling, flaps may be partially extended to reduce the stalling speed so that the glider can be flown more slowly and thereby turn in a smaller circle to make best use of the core of the
thermal . At higher speeds a negative flap setting is used to reduce the nose-downpitching moment . This reduces the balancing load required on the horizontal stabilizer which in turn reduces the trim drag -drag associated with keeping the glider in longitudinal trim. Negative flap may also be used during the initial stage of an aerotow launch and at the end of the landing run in order to maintain better control by the ailerons.Types of flap systems include:
* Krueger fl
http://www.hq.nasa.gov/pao/History/SP-468/ch10-5.htm] [http://www.aoe.vt.edu/~jschetz/fluidnature/unit05/unit5e.html] Often called a "droop."
* Plain fl
* Split fl
* Fowler fl
* Fairey-Youngman fl
* Slotted fl
slot (or gap) between the flap and the wing enables high pressure air from below the wing to re-energize theboundary layer over the flap. This helps the airflow to stay attached to the flap, delaying the stall.
*Blown flap s: systems that blow engine air over the upper surface of the flap at certain angles to improve lift characteristics.There are several technology development efforts to incorporate the function of the flaps into a flexible wing, so that the aerodynamic purpose is accomplished without the weight and mechanical complexity of a flap system. The
X-53 Active Aeroelastic Wing is aNASA effort to incorporate this technology, and theAdaptive Compliant Wing is commercial development effort.Slats , also known as leading-edge flaps, have a similar purpose to trailing-edge flaps, except that they are located on the leading edge of the wing. Note that a Krueger flap and a leading-edge slat differ in how they are extended (and retracted), but their aerodynamic function is the same.ee also
*
Flight controls
*Aileron
*High-lift device
*Circulation control wing
Wikimedia Foundation. 2010.