Order-3 snub heptagonal tiling

Order-3 snub heptagonal tiling
Order-3 snub heptagonal tiling
Order-3 snub heptagonal tiling
Poincaré_disk_model
Type Hyperbolic semiregular tiling
Vertex figure 3.3.3.3.7
Schläfli symbol s{7,3}
Wythoff symbol | 7 3 2
Coxeter-Dynkin CDel node h.pngCDel 7.pngCDel node h.pngCDel 3.pngCDel node h.png
Symmetry [7,3]
Dual Order-7-3 floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the order-3 snub heptagonal tiling is a semiregular tiling of the hyperbolic plane. There is four triangles, one heptagon on each vertex. It has Schläfli symbol of s{7,3}.

Contents

Related polyhedra and tilings

This tiling is part of sequence of snubbed polyhedra with vertex figure (3.3.3.3.p) and Coxeter-Dynkin diagram CDel node h.pngCDel p.pngCDel node h.pngCDel 3.pngCDel node h.png. These face-transitive figures have (n32) rotational symmetry.

Uniform polyhedron-33-s012.png
(3.3.3.3.3)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
(332)
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
(432)
Uniform polyhedron-53-s012.png
(3.3.3.3.5)
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
(532)
Uniform tiling 63-snub.png
3.3.3.3.6
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
(632)
Uniform tiling 73-snub.png
3.3.3.3.7
CDel node h.pngCDel 7.pngCDel node h.pngCDel 3.pngCDel node h.png
(732)
Uniform tiling 83-snub.png
3.3.3.3.8
CDel node h.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png
(832)

Dual tiling

The dual tiling is called an order-7-3 floret pentagonal tiling, and is related to the floret pentagonal tiling.

Ord7 3 floret penta til.png

References

See also

External links