- Coded mark inversion
-
In telecommunication, coded mark inversion (CMI) is a non-return-to-zero (NRZ) line code. It encodes zero bits as a half bit time of zero followed by a half bit time of one, and while one bits are encoded as a full bit time of a constant level. The level used for one bits alternates each time one is coded.
This is vaguely reminiscent of, but quite different from, Miller encoding, which also uses half-bit and full-bit pulses, but additionally uses the half-one/half-zero combination and arranges them so that the signal always spends at least a full bit time at a particular level before transitioning again.
CMI doubles the bitstream frequency, when compared to its simple NRZ equivalent, but allows easy and reliable clock recovery.
References
- ITU-T G.703 (11/2001), Annex A, A.3 Definition of CMI.
- US 4325053, Pierre Le Brozec; Francois Ferret & Pierre Doussoux, "Method and a circuit for decoding a C.M.I. encoded binary signal", issued 1982-04-13 (google patents link)
See also
Line coding (digital baseband transmission) Main articles Basic line codes Return to zero (RZ) · Non-return-to-zero, level (NRZ/NRZ-L) · Non-return-to-zero, inverted (NRZ-I) · Non-Return-to-Zero, space (NRZ-S) · Manchester · Differential Manchester/Biphase (Bi-φ)Extended line codes Conditioned Diphase · 4B3T · 4B5B · 2B1Q · Alternate Mark Inversion · Modified AMI code · Coded mark inversion · MLT-3 encoding · Hybrid ternary code · 6b/8b encoding · 8b/10b encoding · 64b/66b encoding · Eight-to-fourteen modulation · Delay/Miller encoding · TC-PAMOptical line codes Carrier-Suppressed Return-to-Zero · Alternate-Phase Return-to-ZeroSee also: Baseband · Baud · Bit rate · Digital signal · Digital transmission · Ethernet physical layer · Pulse modulation methods · Pulse-amplitude modulation (PAM) · Pulse code modulation (PCM) · Serial communication · Category:Line codes Categories:- Encodings
- Line codes
Wikimedia Foundation. 2010.