Van der Waerden number

Van der Waerden number

Van der Waerden's theorem states that for any positive integers "r" and "k" there exists a positive integer "N" such that if the integers {1, 2, ..., "N"} are colored, each with one of "r" different colors, then there are at least "k" integers in arithmetic progression all of the same color. The smallest such "N" is the van der Waerden number "V"("r","k"). Van der Waerden numbers are primitive recursive, as proved by Shelah; [Shelah, S. "Primitive Recursive Bounds for van der Waerden Numbers." "Journal of the American Mathematical Society" 1 (1988), pp. 683–697.] in fact he proved that they are (at most) on the fifth level mathcal{E}^5 of the Grzegorczyk hierarchy.

"V"(1,"k")="k" for any integer "k", since one color produces only trivial colorings RRRRR...RRR (for the single color denoted R). "V"("r",2)="r"+1, since we may construct a coloring that avoids arithmetic progressions of length 2 by using each color at most once, but once we use a color twice, a length 2 arithmetic progression is formed (e.g., for "r"=3, the longest coloring we can get that avoids an arithmetic progression of length 2 is RGB).

There are only a few known nontrivial van der Waerden numbers. Bounds in this table taken from Herwig, et. al 2007 [P.R. Herwig, M.J.H. Heule, P.M. van Lambalgen, H. van Maaren. " [http://www.combinatorics.org/Volume_14/Abstracts/v14i1r6.html A New Method to Construct Lower Bounds for Van der Waerden Numbers] ", "The Electronic Journal of Combinatorics" 14:1 (2007).] except where otherwise noted.

:

2-color van der Waerden numbers are bounded by:(n-1)2^{n-1}le V(2,n)le 2^{2^{2^{2^{2^{n+9}The left inequality holds for "n" − 1 prime, and is due to Berlekamp; [Berlekamp, E., "A construction for partitions which avoid long arithmetic progressions", "Canadian Mathematics Bulletin" 11 (1968), pp. 409–414.] the right inequality, which holds for all "n", is due to Timothy Gowers. [Gowers, W. T., "A new proof of Szemerédi's theorem", "Geometric and Functional Analysis" 11 (2001), pp. 465–588.]

One sometimes also writes "w"("k"1, "k"2, ..., "k""r") to mean the smallest number "w" such that any coloring of the integers { 1, 2, ..., "w" } with "r" colors contains a progression of length "k"i of color "i", for some "i". Such numbers are called "off-diagonal van der Waerden numbers". Thus "V"("r", "k") = "w"("k", "k", ..., "k") with "r" arguments. "w"(4, 3, 3) is known to be exactly 51. [cite book |title=Discrete Mathematics And Its Applications |editor=M. Sethumadhavan |last=Brown | first=Tom C. | pages=80 | chapter=A partition of the non-negative integers, with applications to Ramsey theory |authorlink= |coauthors= |year=2006 |publisher=Alpha Science Int'l Ltd. |location= |isbn=8173197318 ]

External links

*MathWorld|title=Van der Waerden Number|urlname=vanderWaerdenNumber|author=O'Bryant, Kevin and Weisstein, Eric W.

References

*cite book
last = Landman
first = Bruce
coauthors = Aaron Robertson
title = Ramsey Theory on the Integers
publisher = American Mathematical Society
date = Jan 2004
pages = 317


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Van der Waerden's theorem — is a theorem of the branch of mathematics called Ramsey theory. The theorem is about the basic structure of the integers. It is named for Dutch mathematician B. L. van der Waerden. [B.L. van der Waerden, Beweis einer Baudetschen Vermutung , Nieuw …   Wikipedia

  • Satz von Van der Waerden — Der Satz von Van der Waerden (nach Bartel Leendert van der Waerden) ist ein berühmter Satz aus der Kombinatorik, genauer aus der Ramseytheorie. Er besagt, dass für alle natürlichen Zahlen r und l eine natürliche Zahl N(r,l) existiert, so dass… …   Deutsch Wikipedia

  • Bartel Leendert van der Waerden — Infobox Scientist box width = name = Bartel Leendert van der Waerden image size = caption = birth date = birth date|1903|2|2 birth place = Amsterdam, Netherlands death date = death date and age|1996|1|12|1903|2|2 death place = Zürich, Switzerland …   Wikipedia

  • Bartel Leendert van der Waerden — (/ʋardən/) (* 2. Februar 1903 in Amsterdam; † 12. Januar 1996 in Zürich) war ein niederländischer Mathematiker. Inhaltsverzeichnis 1 Leben 2 Wirken …   Deutsch Wikipedia

  • Number theory — A Lehmer sieve an analog computer once used for finding primes and solving simple diophantine equations. Number theory is a branch of pure mathematics devoted primarily to the study of the integers. Number theorists study prime numbers (the… …   Wikipedia

  • List of number theory topics — This is a list of number theory topics, by Wikipedia page. See also List of recreational number theory topics Topics in cryptography Contents 1 Factors 2 Fractions 3 Modular arithmetic …   Wikipedia

  • Théorie de Ramsey — La théorie de Ramsey, qui porte le nom de Frank Ramsey, pose typiquement une question de la forme : combien d éléments d une certaine structure doivent être considérés pour qu une propriété particulière se vérifie ? Un adage souvent… …   Wikipédia en Français

  • List of mathematics articles (V) — NOTOC Vac Vacuous truth Vague topology Valence of average numbers Valentin Vornicu Validity (statistics) Valuation (algebra) Valuation (logic) Valuation (mathematics) Valuation (measure theory) Valuation of options Valuation ring Valuative… …   Wikipedia

  • Открытые математические проблемы — Открытые (нерешённые) математические проблемы  проблемы, которые рассматривались математиками, но до сих пор не решены. Часто имеют форму гипотез, которые предположительно верны, но нуждаются в доказательстве. В научном мире популярна… …   Википедия

  • Problèmes non résolus en mathématiques — Ce qui suit est une liste de problèmes non résolus en mathématiques. Sommaire 1 Problèmes du prix du millénaire 2 Autres problèmes encore non résolus 2.1 Théorie des nombres 2.2 …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”