Stefan problem

Stefan problem

In mathematics and its applications, particularly to phase transitions in matter, a Stefan problem (also Stefan task) is a particular kind of boundary value problem for a partial differential equation (PDE), adapted to the case in which a phase boundary can move with time. The classical Stefan problem aims to describe the temperature distribution in a homogeneous medium undergoing a phase change, for example ice passing to water: this is accomplished by solving the heat equation imposing the initial temperature distribution on the whole medium, and a particular boundary condition, the Stefan condition, on the evolving boundary between its two phases. Note that this evolving boundary is an unknown (hyper-)surface: hence, Stefan problems are examples of free boundary problems.

Contents

Historical note

The problem is named after Jožef Stefan, the Slovene physicist who introduced the general class of such problems around 1890, in relation to problems of ice formation. This question had been considered earlier, in 1831, by Lamé and Clapeyron.

Premises to the mathematical description

From a mathematical point of view, the phases are merely regions in which the coefficients of the underlying PDE are continuous and differentiable up to the order of the PDE. In physical problems such coefficients represent properties of the medium for each phase. The moving boundaries (or interfaces) are infinitesimally thin surfaces that separate adjacent phases; therefore, the coefficients of the underlying PDE and its derivatives may suffer discontinuities across interfaces.

The underlying PDE is not valid at phase change interfaces; therefore, an additional condition—the Stefan condition—is needed to obtain closure. The Stefan condition expresses the local velocity of a moving boundary, as a function of quantities evaluated at both sides of the phase boundary, and is usually derived from a physical constraint. In problems of heat transfer with phase change, for instance, the physical constraint is that of conservation of energy, and the local velocity of the interface depends on the heat flux discontinuity at the interface.

Mathematical formulation

The one-dimensional one-phase Stefan problem

Consider an semi-infinite one-dimensional block of ice initially at melting temperature u0 for x ∈ [0,+∞[. The ice is heated from the left with heat flux f(t). The flux causes the block to melt down leaving an interval [0,s(t)] occupied by water. The melt depth of the ice block, denoted by s(t), is an unknown function of time; the solution of the Stefan problem consists of finding u and s such that

\begin{align}
\frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2} &&\text{in } \{(t,x): 0 < x < s(t), t>0\}, && \text{the heat equation},\\
-\frac{\partial u}{\partial x}(0, t) &= f(t), && t>0, &&\text{the Neumann condition at the left end of the ice block describing the given heat flux}, &&\\
u\big(s(t),t\big) &= 0, && t>0, &&\text{the Dirichlet condition at the right end of the block setting the temperature to that of melting/freezing},\\
\frac{\mathrm{d}s}{\mathrm{d}t} &= -\frac{\partial u}{\partial x}\big(s(t), t\big), && t>0, &&\text{Stefan condition},\\
u(x,0) &= 0, && x\geq 0, &&\text{initial temperature distribution},\\
s(0) &= 0, && &&\text{initial melt depth of the ice block}.
\end{align}

The Stefan problem also has a rich inverse theory, where one is given the curve s and the problem is to find u or f.

Applications

The solution of the Cahn–Hilliard equation for a binary mixture demonstrated to coincide well with the solution of a Stefan problem.[1]

See also

Notes

  1. ^ F. J. Vermolen, M.G. Gharasoo, P. L. J. Zitha, J. Bruining. (2009). Numerical Solutions of Some Diffuse Interface Problems: The Cahn-Hilliard Equation and the Model of Thomas and Windle. IntJMultCompEng,7(6):523–543.

References

  • Vuik, C. (1993), "Some historical notes about the Stefan problem", Nieuw Archief voor Wiskunde, 4e serie 11: 157–167, MR1239620, Zbl 0801.35002 . An interesting historical paper on the early days of the theory: a preprint version (in PDF format) is available here.

Bibliography

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Stefan number — The Stefan number, St or Ste, is defined as the ratio of sensible heat to latent heat. It is given by the formulaSte = frac{C pDelta T}{L} where C p is the specific heat, Delta T is the temperature difference between phases, and L is the latent… …   Wikipedia

  • Stefan-Zahl — Die Stefan Zahl, St ist eine dimensionslose Kennzahl definiert als das Verhältnis von fühlbarer Wärme zu latenter Wärme: Hier bezeichnet Cp die spezifische Wärmekapazität, Tm die Schmelztemperatur, und L die Schmelzwärme. Die Kennzahl ist… …   Deutsch Wikipedia

  • Stefan Winges — (* 17. Juli 1957 in Rheydt) ist ein deutscher Autor von Kriminalromanen und Hörspielen. Stefan Winges Leben Winges studierte Philosophie, Germanistik und Komparatistik in Bonn. Er ist als Ant …   Deutsch Wikipedia

  • Stefan Hentschel — (* 30. September 1948 in Chemnitz Gablenz; † 18. Dezember 2006 in Hamburg) war ein Zuhälter und Boxer auf Sankt Pauli. Inhaltsverzeichnis 1 Leben 2 Literatur 3 Film …   Deutsch Wikipedia

  • Stefan Zweig — um 1900 Signatur von Stefan Zweig Stefan Zweig (* 28. November 1 …   Deutsch Wikipedia

  • Stefan Mappus — 2010 Stefan Mappus (* 4. April 1966 in Pforzheim) ist ein ehemaliger deutscher Politiker (CDU) und ist heute als Management Trainee bei Merck tätig. Von Februar 2010 bis Mai 2011 war er Ministerpräsident des Landes Baden Württemberg und von… …   Deutsch Wikipedia

  • Stefan Hippler — (* 6. Mai 1960 in Bitburg) war von 1997 bis 2009 Pfarrer der deutschsprachigen römisch katholischen Gemeinde in Kapstadt und arbeitet seit dem 1.Oktober 2009 als Fidei Donum Priester mit dem Arbeitsbereich HIV/AIDS in der Erzdiözese Kapstadt …   Deutsch Wikipedia

  • Stefan Koubek — Nationalität: Osterreich …   Deutsch Wikipedia

  • Stefan Scheil — (* 1963 in Mannheim) ist ein deutscher Historiker, der sich hauptsächlich mit dem Zweiten Weltkrieg befasst. In der Zeitgeschichtsforschung werden seine Thesen zu dessen Ursachen und Verlauf als revisionistisch oder apologetisch im Sinne der… …   Deutsch Wikipedia

  • Stefan Römer — (* 11. März 1960 in Katzenelnbogen) ist ein deutscher Künstler und Autor. Inhaltsverzeichnis 1 Biographie 2 Kunstverständnis 3 Literatur 3.1 Veröffentlichungen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”